• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bartz, Marcel"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evaluation of the wear-resistance of DLC-coated hard-on-soft pairings for biomedical applications
    (2023) Rothammer, Benedict; Neusser, Kevin; Bartz, Marcel; Wartzack, Sandro; Schubert, Andreas; Marian, Max
    Diamond-like carbon (DLC) coatings deposited on the articulating surfaces of total hip or knee arthroplasties have the potential to enhance the overall biotribological behavior and longevity. In this contribution, we employ an ultrahigh molecular weight polyethylene ball-on-three cobalt chromium or titanium alloy pin configuration lubricated by simulated body fluid to effectively carry out screening tests. Thus, the influence of the choice of the coated component (metallic and/or polymeric) as well as the differences between a higher and lower load case with non- and conventionally cross-linked polyethylene were studied. The studied coating systems featured excellent mechanical properties with a substantial enhancement of indentation hardness and elastic modulus ratios. The adhesion of the coatings as determined in modified scratch tests can be considered as very good to polymeric and as satisfactory to metallic substrates, thus confirming the potential for the use in total joint arthroplasties. Although the coatings predominantly led to an increase in friction due to the considerably higher roughness, wear was substantially reduced. While only the metallic components were mostly coated in studies reported in literature, our investigation showed that a coating of the polymer component in particular is of decisive importance for enhancing the wear performance and increasing the service life of load-bearing implants. Moreover, single sided coating results in higher wear of the uncoated counter-part. Therefore, coating systems deposited on both articulating surfaces, polymeric and metallic, should be pursued in the future
  • Loading...
    Thumbnail Image
    Item
    Subject-specific tribo-contact conditions in total knee replacements: a simulation framework across scales
    (2023) Rothammer, Benedict; Wolf, Alexander; Winkler, Andreas; Schulte-Hubbert, Felix; Bartz, Marcel; Wartzack, Sandro; Miehling, Jörg; Marian, Max
    Fundamental knowledge about in vivo kinematics and contact conditions at the articulating interfaces of total knee replacements are essential for predicting and optimizing their behavior and durability. However, the prevailing motions and contact stresses in total knee replacements cannot be precisely determined using conventional in vivo measurement methods. In silico modeling, in turn, allows for a prediction of the loads, velocities, deformations, stress, and lubrication conditions across the scales during gait. Within the scope of this paper, we therefore combine musculoskeletal modeling with tribo-contact modeling. In the first step, we compute contact forces and sliding velocities by means of inverse dynamics approach and force-dependent kinematic solver based upon experimental gait data, revealing contact forces during healthy/physiological gait of young subjects. In a second step, the derived data are employed as input data for an elastohydrodynamic model based upon the finite element method full-system approach taking into account elastic deformation, the synovial fluid’s hydrodynamics as well as mixed lubrication to predict and discuss the subject-specific pressure and lubrication conditions.
  • No Thumbnail Available
    Item
    Ti3C2Tx-UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants
    (2024) Rothammer, Benedict; Feile, Klara; Werner, Siegfried; Frank, Rainer; Bartz, Marcel; Wartzack, Sandro; Schubert, Dirk W.; Drummer, Dietmar; Detsch, Rainer; Wang, Bo; Rosenkranz, Andreas; Marian, Max
    There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti3C2Tx-UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, Ti3C2Tx-reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback