• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Barrionuevo Chiluiza, Germán Omar"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effect of the microstructure of 316L stainless steel processed by laser powder bed fusion on its wear performance
    (2022) Barrionuevo Chiluiza, Germán Omar; Walczak, Magdalena; Ramos Grez, Jorge; Pontificia Universidad Católica de Chile. Escuela de Ingeniería
    La fabricación aditiva de metal (AM) ha cambiado los paradigmas en el procesamiento de materiales. Sin embargo, al tratarse de un proceso de fabricación por capas y debido a la compleja interacción material-láser, la microestructura resultante difiere de las aleaciones homólogas convencionales, y su evolución depende del ciclo térmico, tanto del gradiente de temperatura como de la tasa de solidificación. Dado que las propiedades mecánicas dependen de la microestructura, las propiedades de una pieza fabricada por fusión selectiva láser (LPBF) están significativamente influenciadas por los parámetros de procesamiento y la estrategia de escaneo. Los componentes para aplicaciones de contacto cinemático requieren una evaluación del rendimiento de desgaste en el contexto de LPBF. La presente investigación se centra en el estudio del efecto de la potencia del láser, la velocidad de escaneo y el espaciamiento de la trama sobre la densidad, microdureza y desgaste del acero inoxidable 316L. Se utilizaron varias técnicas de caracterización para determinar cómo la microestructura afecta la resistencia al desgaste: microscopía óptica y electrónica, difracción de rayos X y espectrometría. Para la evaluación del desgaste se utilizó un tribómetro pin-on-disc y nanoindentación. Además, se realizó una simulación de elementos finitos para estudiar el comportamiento de la pileta fundida y determinar el gradiente térmico y la tasa de enfriamiento. Los resultados muestran que la velocidad es el único parámetro estadísticamente significativo que influye tanto en la densificación como en la microdureza. La muestra fabricada por LPBF muestra un aumento aproximado de 40% en la microdureza y una tasa de desgaste un 30% más baja que la muestra fabricada convencionalmente. La microestructura celular y columnar resultante de la ultrarrápida tasa de enfriamiento durante la solidificación permite una mayor deformación elástico-plástica y por lo tanto mejora la resistencia al desgaste. Finalmente, se concluye que la mejora en la resistencia al desgaste se debe a que la alta densidad de dislocaciones en el límite celular juega un papel clave en el efecto de fortalecimiento interfacial.
  • Loading...
    Thumbnail Image
    Item
    Influence of the Processing Parameters on the Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    (2024) Barrionuevo Chiluiza, Germán Omar; Ramos Grez, Jorge; Sánchez Sánchez, Xavier; Zapata Hidalgo, Daniel; Mullo Casillas, José Luis; Puma Araujo, Santiago Daniel
    Complex thermo-kinetic interactions during metal additive manufacturing reduce the homogeneity of the microstructure of the produced samples. Understanding the effect of processing parameters over the resulting mechanical properties is essential for adopting and popularizing this technology. The present work is focused on the effect of laser power, scanning speed, and hatch spacing on the relative density, microhardness, and microstructure of 316L stainless steel processed by laser powder bed fusion. Several characterization techniques were used to study the microstructure and mechanical properties: optical, electron microscopies, and spectrometry. A full-factorial design of experiments was employed for relative density and microhardness evaluation. The results derived from the experimental work were subjected to statistical analysis, including the use of analysis of variance (ANOVA) to determine both the main effects and the interaction between the processing parameters, as well as to observe the contribution of each factor on the mechanical properties. The results show that the scanning speed is the most statistically significant parameter influencing densification and microhardness. Ensuring the amount of volumetric energy density (125 J/mm3) used to melt the powder bed is paramount; maximum densification (99.7%) is achieved with high laser power and low scanning speed, while hatch spacing is not statistically significant.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback