• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Barrera-Ballesteros, J. K."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    SDSS-IV MaNGA: A Star Formation-Baryonic Mass Relation at Kiloparsec Scales
    (2021) Barrera-Ballesteros, J. K.; Heckman, T.; Sanchez, S. F.; Drory, N.; Cruz-Gonzalez, I.; Carigi, L.; Riffel, R. A.; Boquien, M.; Tissera, P.; Bizyaev, D.; Rong, Y.; Boardman, N. F.; Hurtado, P. Alvarez
    Star formation rate density, sigma(SFR), has shown a remarkable correlation with both components of the baryonic mass kiloparsec scales (i.e., the stellar mass density and molecular gas mass density, sigma(*) and sigma(mol), respectively) for galaxies in the nearby universe. In this study, we propose an empirical relation between sigma(SFR) and the baryonic mass surface density (sigma(b) = sigma(mol,Av) + sigma(*), where sigma(mol,Av) is the molecular gas derived from the optical extinction, A(V)) at kiloparsec scales using the spatially resolved properties of the MaNGA survey, the largest sample of galaxies observed via integral field spectroscopy (similar to 8400 objects). We find that sigma(SFR) tightly correlates with sigma(b). Furthermore, we derive an empirical relation between sigma(SFR) and a second-degree polynomial of sigma(b), yielding a one-to-one relation between these two observables. Both sigma(b) and its polynomial form show a stronger correlation and smaller scatter with respect to sigma(SFR) than the relations derived using the individual components of sigma(b). Our results suggest that these three parameters are indeed physically correlated, suggesting a scenario in which the two components of the baryonic mass regulate the star formation activity at kiloparsec scales.
  • No Thumbnail Available
    Item
    Which Galaxy Property is the Best Gauge of the Oxygen Abundance?
    (2022) Alvarez-Hurtado, P.; Barrera-Ballesteros, J. K.; Sanchez, S. F.; Colombo, D.; Lopez-Sanchez, A. R.; Aquino-Ortiz, E.
    We present an extensive exploration of the impact of 29 physical parameters in the oxygen abundance for a sample of 299 star-forming galaxies extracted from the extended Calar Alto Legacy Integral Field Area Survey sample. We corroborate that the stellar mass is the physical parameter that better traces the observed oxygen abundance (i.e., the mass-metallicity relation; MZR), while other physical parameters could play a potential role in shaping this abundance, but with a lower significant impact. We find that the functional form that best describes the MZR is a third-order polynomial function. From the residuals between this best functional form and the MZR, we find that once considered the impact of the mass in the oxygen abundance, the other physical parameters do not play a significant secondary role in shaping the oxygen abundance in these galaxies (including the gas fraction or the star formation rate). Our analysis suggests that the origin of the MZR is related to the chemical enrichment evolution of the interstellar medium due, most likely, to the buildup of stellar mass in these star-forming galaxies.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback