Browsing by Author "Ballesteros, Luis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNew Benzotrithiophene-Based Molecules as Organic P-Type Semiconductor for Small-Molecule Organic Solar Cells(2023) Castillo, Cristian; Aracena, Andres; Ballesteros, Luis; Neculqueo, Gloria; Gence, Loik; Quero, FranckA new benzotrithiophene-based small molecule, namely 2,5,8-Tris[5-(2,2-dicyanovinyl)-2-thienyl]-benzo[1,2-b:3,4-b ':6,5-b '']-trithiophene (DCVT-BTT), was successfully synthesized and subsequently characterized. This compound was found to present an intense absorption band at a wavelength position of similar to 544 nm and displayed potentially relevant optoelectronic properties for photovoltaic devices. Theoretical studies demonstrated an interesting behavior of charge transport as electron donor (hole-transporting) active material for heterojunction cells. A preliminary study of small-molecule organic solar cells based on DCVT-BTT (as the P-type organic semiconductor) and phenyl-C61-butyric acid methyl ester (as the N-type organic semiconductor) exhibited a power conversion efficiency of 2.04% at a donor: acceptor weight ratio of 1:1.
- ItemStructural and photoelectrochemical dynamics of in-situ hydrogenated anatase TiO2 thin films grown by DC reactive magnetron sputtering(2023) Villarroel, Roberto; Zambrano-Mera, Dario; Espinoza-Gonzalez, Rodrigo; Paredes-Gil, Katherine; Pantaleone, Stefano; Ballesteros, Luis; Oskam, Gerko; Garcia-Merino, Jose A.; Hevia, Samuel A.; Gonzalez-Moraga, GuillermoHydrogenation has become one of the most used strategies to improve the photoactive properties of titanium dioxide nanomaterials, n-TiO2. In order to obtain more information about the hydrogenated process on anatase TiO2 thin films and the improvement of the photoactivity of this material, we report a study on the structural changes of hydrogenated anatase thin films produced by direct-current reactive magnetron sputtering. In the first stage of the hydrogenation process, the obtained polycrystalline anatase films present an increment of the {0 0 1} facet according to the amount of hydrogen used in the plasma reaction. At higher hydrogen concentrations, amorphous and rutile phases start to appear. The photoactivity of the hydrogenated anatase samples, H:TiO2, presents a redshift of the photoelectrochemical onset and an increase of the reactivity in the UV region. Both results were experimentally and theoretically related to the formation of defects such as oxygen vacancies and TiH/Ti-OH bonds at the surface of the hydrogenated thin films.