Browsing by Author "Aylwin, Ruben"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOptimization methods for achieving high diffraction efficiency with perfect electric conducting gratings(2020) Aylwin, Ruben; Silva-Oelker, Gerardo; Jerez-Hanckes, Carlos; Fay, PatrickThis work presents the implementation, numerical examples, and experimental convergence study of first- and second-order optimization methods applied to one-dimensional periodic gratings. Through boundary integral equations and shape derivatives, the profile of a grating is optimized such that it maximizes the diffraction efficiency for given diffraction modes for transverse electric polarization. We provide a thorough comparison of three different optimization methods: a first-order method (gradient descent); a second-order approach based on a Newton iteration, where the usual Newton step is replaced by taking the absolute value of the eigenvalues given by the spectral decomposition of the Hessian matrix to deal with non-convexity; and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a quasi-Newton method. Numerical examples are provided to validate our claims. Moreover, two grating profiles are designed for high efficiency in the Littrow configuration and then compared to a high efficiency commercial grating. Conclusions and recommendations, derived from the numerical experiments, are provided as well as future research avenues. (C) 2020 Optical Society of America
- ItemThe effect of quadrature rules on finite element solutions of Maxwell variational problems Consistency estimates on meshes with straight and curved elements(2021) Aylwin, Ruben; Jerez-Hanckes, CarlosWe study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete a priori error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution of numerical quadrature rules.