Browsing by Author "Ashfaq, R"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemComparison of features of human breast cancer cell lines and their corresponding tumors(AMER ASSOC CANCER RESEARCH, 1998) Wistuba, II; Behrens, C; Milchgrub, S; Syed, S; Ahmadian, M; Virmani, AK; Kurvari, V; Cunningham, TH; Ashfaq, R; Minna, JD; Gazdar, AFAlthough human tumor-derived cell lines play an important role in the investigation of cancer biology and genetics, there is no comprehensive study comparing tumor cell line properties with those of the individual tumors from which they were derived. We compared the properties of a series of 18 human breast cancer cell lines that were cultured for a median period of 25 months (range, 9-60 months) and their corresponding archival tumor tissues. We compared morphological characteristics, ploidy, and immunohistochemical expression of estrogen receptors, progesterone receptors, and HER2/neu and p53 proteins. For 17 of these cases, we also tested for allelic losses at 18 chromosomal regions frequently deleted in breast tumors using 51 polymorphic microsatellite markers, and we determined the TP53 gene mutation status in exons 5 to 10, There was an excellent correlation between the breast tumor cell lines and their corresponding tumor tissues for morphological features (100%); presence of aneuploidy (87%); immunohistochemical expression of estrogen receptors (87%), progesterone receptors (73%), and HER2/neu (93%) and p53 proteins (100%); allelic loss at all of the chromosomal regions analyzed (82-100% concordance); and TP53 gene mutations (75%), The same parental allele was lost in 279 (99%) of 281 of the comparisons of allele losses. The fractional allelic loss indices (a reflection of the total allelic loss) of the cell lines and their corresponding tumor tissues were identical or similar in 15 (88%) of 17 paired comparisons, Although our previous studies (A, Gazdar et at, Int. J, Cancer, in press) indicated that only a subset of primary breast carcinomas that have several features indicative of advanced tumors with poor prognosis can be successfully cultured, the cell lines retain the properties of their parental tumors for lengthy culture periods and, thus, provide suitable model systems for biomedical studies.
- ItemComparison of features of human lung cancer cell lines and their corresponding tumors(AMER ASSOC CANCER RESEARCH, 1999) Wistuba, II; Bryant, D; Behrens, C; Milchgrub, S; Virmani, AK; Ashfaq, R; Minna, JD; Gazdar, AFAlthough human lung tumor-derived cell lines play an important role in the investigation of lung cancer biology and genetics, there is no comprehensive study comparing the genotypic and phenotypic properties of lung cancer cell lines with those of the individual tumors from which they were derived, We compared a variety of properties of 12 human non-small cell lung carcinoma (NSCLC) cell lines (cultured for a median period of 39 months; range, 12-69) and their corresponding archival tumor tissues. There was, in general, an excellent concordance between the lung tumor cell lines and their corresponding tumor tissues for morphology (100%), the presence of aneuploidy (100%), immunohistochemical expression of HER2/neu (100%) and p53 proteins (100%), loss of heterozygosity at 13 chromosomal regions analyzed (97%) using 37 microsatellite markers, microsatellite alterations (MAs, 75%), TP53 (67%), and K-ras (100%) gene mutations, In addition, there was 100% concordance for the parental allele lost in all 115 comparisons of allelic losses. Some discrepancies were found; more aneuploid subpopulations of cells were detected in the cell lines as well as higher incidences of TP53 mutations (4 of 10 mutations not found in the tumors) and microsatellite alterations (two cell lines with MAs not detected in the tumors). Similar loss of heterozygosity frequencies by chromosomal regions and mean fractional allelic loss index were detected between successfully cultured and 40 uncultured lung tumors (0.45 and 0.49, respectively), indicating that both groups were similar. Our findings indicate that the NSCLC cell lines in the large majority of instances retain the properties of their parental tumors for lengthy culture periods. NSCLC cell lines appear very representative of the lung cancer tumor from which they were derived and thus provide suitable model systems for biomedical studies of this important neoplasm.
- ItemHigh-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss(2001) Maitra, A; Wistuba, II; Washington, C; Virmani, AK; Ashfaq, R; Milchgrub, S; Gazdar, AF; Minna, JDWe performed high-resolution allelotyping for loss of heterozygosity (LOH) analysis on microdissected samples from 45 primary breast cancers, 47 mammary preneoplastic epithelial foci, and 18 breast cancer cell Lines, using a panel of 27 polymorphic chromosome 3p markers. Allele loss in some regions of chromosome 3p was detected in 39 of 45 (87%) primary breast tumors. The 3p21.3 region had the highest frequency of LOH (69%), followed by 3p22-24 (61%), 3p21.2-21.3 (58%), 3p25 (48%), 3p14.2 (45%), 3p14.3 (41%), and 3p12 (35%). Analysis of all of the data revealed at least nine discrete intervals showing frequent allele loss: D3S1511-D3S1284 (U2020/DUTT1 region centered on D3S1274 with a homozygous deletion), D3S1300-D3S1234 [fragile histidine triad (FHIT)/FRA3B region centered on D3S1300 with a homozygous deletion], D3S1076-D3S1573, D3S4624/ Luca2.1-D3S4597/P1.5, D3S1478-D3S1029, D3S1029 (with a homozygous deletion), D3S1612-D3S1537, D3S1233-D3S1597, and D3S1597-telomere; it is more than likely that additional localized regions of LOH not examined in this study also exist on chromosome 3p. In multiple cases, there was discontinuous allele loss at several 3p sites in the same tumor. Twenty-one of 47 (45%) preneoplastic lesions demonstrated 3p LOH, including 12 of 13 (92%) ductal carcinoma in situ, 2 of 7 (29%) apocrine metaplasia, and 7 of 25 (28%) usual epithelial hyperplasia. The 3p21.3 region had the highest frequency of LOH in preneoplastic breast epithelium (36%), followed by 3p21.2-21.3 (20%), 3p14.2/FHIT region (11%), 3p25 (10%), and 3p22-24 (5%). In 39 3p loci showing LOH in both the tumor and accompanying preneoplasia, 34 (87%) showed loss of the same parental allele (P = 1.2 x 10(-6), cumulative binomial test). In addition, when 21 preneoplastic samples showing LOH were compared to their accompanying cancers, 67% were clonally related, 20% were potentially clonally related but were divergent, and 13% were clonally unrelated. Overall this demonstrated the high likelihood of clonal relatedness of the preneoplastic foci to the tumors. We conclude that: chromosome 3p allele loss is a common event in breast carcinoma pathogenesis; involves multiple, localized sites that often show discontinuous LOH with intervening markers retaining heterozygosity; and is seen in early preneoplastic stages, which demonstrate clonal relatedness to the invasive cancer.
- ItemIdentification of novel cellular targets in biliary tract cancers using global gene expression technology(2003) Hansel, DE; Rahman, A; Hidalgo, M; Thuluvath, PJ; Lillemoe, KD; Shulick, R; Ku, JL; Park, JG; Miyazaki, K; Ashfaq, R; Wistuba, II; Varma, R; Hawthorne, L; Geradts, J; Argani, P; Maitra, ABiliary tract carcinoma carries a poor prognosis, and difficulties with clinical management in patients with advanced disease are often due to frequent late-stage diagnosis, lack of serum markers, and limited information regarding biliary tumor pathogenesis. RNA-based global analyses of gene expression have led to the identification of a large number of up-regulated genes in several cancer types. We have used the recently developed Affymetrix U133A gene expression microarrays containing nearly 22,000 unique transcripts to obtain global gene expression profiles from normal biliary epithelial scrapings (n = 5), surgically resected biliary carcinoma (n = 11), and biliary cancer cell lines (n = 9). Microarray hybridization data were normalized using dCHIP (http://www.dCHW.org) to identify differentially up-regulated genes in primary biliary cancers and biliary cancer cell lines and their expression profiles was compared to that of normal epithelial scrapings using the dCHIP software as well as Significance Analysis of Microarrays or SAM (http://wwwstat.stanford.edu/-tibs/SAM/). Comparison of the dCHIP and SAM datasets revealed an overlapping list of 282 genes expressed at greater than threefold levels in the cancers compared to normal epithelium (t-test P <0.1 in dCHIP, and median false discovery rate <10 in SAM). Several pathways integral to tumorigenesis were up-regulated in the biliary cancers, including proliferation and cell cycle antigens (eg, cyclins D2 and E2, cdc2/p34, and geminin), transcription factors (eg, homeobox B7 and islet-1), growth factors and growth factor receptors (eg, hepatocyte growth factor, amphiregulin, and insulin-like growth factor 1 receptor), and enzymes modulating sensitivity to chemotherapeutic agents (eg, eystatbionine beta synthase, dCMP deaminase, and CTP synthase). in addition, we identified several "pathway" genes that are rapidly emerging as novel therapeutic targets in cancer (eg, cytosolic phospholipase A2, an upstream target of the cyclooxygenase pathway, and ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E, two important downstream mediators of the mitogenic Akt/mTOR signaling pathway). Overexpression of selected up-regulated genes was confirmed in tissue microarrays of biliary cancers by immunohistochemical analysis (n = 4) or in situ hybridization (n = 1), and in biliary cancer cell lines by reverse transcriptase PCR (n = 2). The majority of genes identified in the present study has not been previously reported in biliary cancers, and represent novel potential screening and therapeutic targets of this cancer type.