Browsing by Author "Arunachalam, Krishna Prakash"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemBiodegradable Green Composites: Effects of Potassium Permanganate (KMnO4) Treatment on Thermal, Mechanical, and Morphological Behavior of Butea Parviflora (BP) Fibers(2023) Abisha, M.; Priya, R. Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Flores, Erick I. Saavedra I.; Parra, Pablo FernandoThis study emphasizes the importance of utilizing biodegradable material Butea parviflora (BP) fiber for sustainable solutions. BP fiber offers numerous ecological benefits, such as being lightweight, biodegradable, and affordable to recycle. The study examines the effects of potassium permanganate (KMnO4) treatment on BP fiber and analyzes its physical and chemical behavior using various methods, including X-ray Diffraction (XRD) analysis, tensile testing, thermogravimetric analysis, thermal conductivity, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopic (FTIR) analysis. The results demonstrate that BP fiber possesses low density (1.40 g/cc) and high cellulose content (59.4%), which fosters compatibility between the matrix and resin. XRD analysis indicates a high crystallinity index (83.47%) and crystallite size (6.4 nm), showcasing exceptional crystalline behavior. Treated fibers exhibit improved tensile strength (198 MPa) and Young's modulus (4.40 GPa) compared to untreated fibers (tensile strength-92 MPa, tensile modulus-2.16 GPa). The Tg-DTA thermograms reveal the fiber's thermal resistance up to 240 degrees C with a kinetic activation energy between 62.80-63.46 KJ/mol. Additionally, the lowered thermal conductivity (K) from Lee's disc experiment suggests that BP fiber could be used in insulation applications. SEM photographic results display effective surface roughness for composite making, and FTIR studies reveal vibrational variations of cellulosic functional groups, which correlates with increased cellulosic behavior. Overall, the study affirms the potential of BP fiber as a reinforcing material for composite-making while emphasizing the importance of utilizing biodegradable materials for sustainability.
- ItemCharacterisation of Sodium Acetate Treatment on Acacia pennata Natural Fibres(2023) Sheeba, Kasirajan Rajam Jaya; Priya, Retnam Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Maureira-Carsalade, Nelson; Roco-Videla, AngelThe present study concerns the physico-chemical, structural, mechanical and thermal characterization of Acacia pennata, a natural and almost inexpensive fibre, as a potential reinforcement in polymer composites. The effect of treating the fibre with sodium acetate to increase its qualities has been seen through the use of thermogravimetric analysis, scanning electron microscope (SEM) analysis, X-ray diffraction (XRD), mechanical property tester, and Fourier transform infrared spectroscopy (FTIR). According to XRD analysis, the elimination of lignin and wax-like impurities resulted in an increase in the AP fibre's crystalline index (79.73%). The fibre's thermal stability was also discovered to be 365 degrees C. Tensile strength (557.58 MPa) and elongation at break both increased by 2.9% after treatment with sodium acetate. The surface nature and quality of AP fibres improved after sodium acetate treatment. It was confirmed by the reduction of chemical compositions (such as hemicellulose, lignin and pectin). Given its density, the fibre can be suggested as a reinforcement in polymer composites for light-weight applications because its lightweight property will be more useful for composite manufacturing.
- ItemEnhancing structural, thermal, and mechanical properties of Acacia pennata natural fibers through benzoyl chloride treatment for construction applications(2023) Sheeba, K. R. Jaya; Priya, R. Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Flores, Erick Saavedra; Kozlov, PavelIn recent years, there has been growing interest in exploring natural fiber reinforced composites as potential alternatives to conventional materials in various structural applications. The aim of this study on Acacia pennata fibers (APFs) and treating them with benzoyl chloride was to explore their potential as reinforcement in construction-related materials. The aim was to investigate the physico-chemical, thermal, and mechanical properties of these fibers to understand their suitability for applications in concrete reinforcement, retrofitting, roofing, and wall panels. By enhancing the understanding of the treated fibers' characteristics, this study contributes to the development of sustainable and high-performance construction materials. The fibers were extracted using both water retting and chemical retting methods. The physico-chemical properties of the fibers were assessed through X-ray diffraction (XRD) analysis, which determined a calculated crystalline index (CI) of 72.14% and a crystalline size of 2.6 nm. Thermo-gravimetric analysis was conducted to evaluate the thermal stability of the APFs, revealing a temperature of 366 degrees C and a maximum degradation temperature of 226.7 degrees C. Mechanical analysis included measurements of the APFs' tensile strength (467.86 MPa), tensile modulus (14.62 GPa), microfibrillar angle (14.79), and elongation at break (3.2%). The findings derived from these analyses suggest that the APFs that underwent treatment exhibit desirable mechanical characteristics, rendering them a viable option for utilization in construction-related materials like reinforcement in concrete, retrofitting, roofing and wall Pannels. This research presents a novel exploration of Acacia pennata fibers (APFs) treated with benzoyl chloride, aiming to establish their potential as reinforcements for construction materials. While natural fiber-reinforced composites have drawn interest, the unique application of APFs in construction and their treatment with benzoyl chloride to enhance properties remain relatively unexplored in the literature. This study fills a significant
- ItemExamining the physico-chemical, structural and thermo-mechanical properties of naturally occurring Acacia pennata fibres treated with KMnO4(2023) Sheeba, K. R. Jaya; Priya, Retnam Krishna; Arunachalam, Krishna Prakash; Shobana, S.; Avudaiappan, Siva; Flores, Erick SaavedraNatural fiber is a viable and possible option when looking for a material with high specific strength and high specific modulus that is lightweight, affordable, biodegradable, recyclable, and eco-friendly to reinforce polymer composites. There are many methods in which natural fibres can be incorporated into composite materials. The purpose of this research was to evaluate the physico-chemical, structural, thermal, and mechanical properties of Acacia pennata fibres (APFs). Scanning electron microscopy was used to determine the AP fibers' diameter and surface shape. The crystallinity index (64.47%) was discovered by XRD. The irregular arrangement and rough surface are seen in SEM photos. The findings demonstrated that fiber has high levels of cellulose (55.4%), hemicellulose (13.3%), and low levels of lignin (17.75%), which were determined through chemical analysis and validated by Fourier Transform Infrared Spectroscopy (FTIR). By using FTIR, the functional groups of the isolated AP fibers were examined, and TG analysis was used to look into the thermal degrading behaviour of the fibers treated with potassium permanganate (KMnO4) Due to their low density (520 kg/m(3)) and high cellulose content (55.4%), they have excellent bonding qualities. Additionally, tensile tests were used for mechanical characterisation to assess their tensile strength (685 MPa) and elongation.
- ItemExperimental investigation on the physical, microstructural, and mechanical properties of hemp limecrete(2023) Avudaiappan, Siva; Cuello Moreno, Pablo Ignacio; Montoya R, Luis Felipe; Chavez-Delgado, Manuel; Arunachalam, Krishna Prakash; Guindos Bretones, Pablo; Marzialetti B, Teresita; Fernando Parra, Pablo; Saavedra Flores, Erick I; Flores Arrey, Julio Ignacio
- ItemExperimental Study on the Mechanical Properties and Microstructures of Cenosphere Concrete(2023) Arunachalam, Krishna Prakash; Avudaiappan, Siva; Flores, Erick I. Saavedra; Parra, Pablo FernandoThe most valuable components of coal fly ash are cenospheres. Cenospheres are hollow spherical particles produced during the coal-burning processes. As a result of their excellent characteristics, such as high workability, high heat resistance, low bulk density, and high strength, cenospheres can be used in the manufacturing of lightweight cement concrete. The research efforts and outcomes are to produce long-lasting cement-based lightweight concrete (LWC) composites with good mechanical properties. The novelty of this investigation is to determine the cement concrete strength when silica fume (SF) and cenospheres (CS) were used as a replacement for cement. Throughout the experiments, a consistent substitution of 12% silica fume was incorporated into cement mass. Silica is used as a micro filler and pozzolanic reactant to strengthen concrete. The concrete mixtures were tested to ensure they met the requirements of the lightweight concrete in terms of their mechanical, physical, and durability qualities. According to the findings, lightweight concrete standards were met, and environmental sustainability was improved with the use of these mix proportions. Concrete specimen's self-weight decreases by 35% with 30% cenosphere as a replacement. The micrograph shows the lack of portlandite is filled by mullite and other alumino silicates from the cenosphere. In order to achieve sustainability in concrete manufacturing, these mixtures can be suggested for the making of structural LWC that makes use of a large volume of industrial waste while conserving cement and natural resources.
- ItemInnovative use of copper mine tailing as an additive in cement mortar(2023) Arunachalam, Krishna Prakash; Avudaiappan, Siva; Maureira, Nelson; Garcia Filho, Fabio Da Costa; Monteiro, Sergio Neves; Batista, Isabela Devesa; de Azevedo, Afonso R. G.This research assesses the feasibility of recycling copper mine tailings (CMT) by analyzing the durability and mechanical characteristics of cement mortar using these tailings as filler additives. CMT are mineral wastes generated during the process of mining. In this work, specimens of cement mortar were incorporated with up to 30 wt.% of a CMT. Bulk density, dynamic modulus of elasticity, apparent density, ultrasonic pulse velocity, flexural and compressive strengths tests were evaluated. Total amount of voids, sorptivity, water ab-sorption and chemical resistance tests were also obtained to evaluate the mortar durability. When 10 wt.% CMT was incorporated, overall amount of voids in the mortar was reduced by 20% and mechanical performance was improved by 16% after 28 days. The flexural strength of the mortar was also found to increase, with the 20% wt.% CMT mortar incorporation reaching a flexural strength of 5.89 MPa. Thus represents 16% increase compared to the control 0% CMT strength. The results indicated that there was not a perfect correlation be-tween these results and the mechanical strength results for the 15 and 20 wt.% CMT mortars. In addition, the CMT acts as a protective barrier against harmful chemicals. The results of this research indicate that reusing CMT by incorporating into cement mortar is a feasible method for their recycling. Mortar made with as much as 15 wt.% CMT presented the same strength and durability as mortar with traditional sand and cement. (c) 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- ItemInnovative use of micronized biomass silica-GGBS as agro-industrial by-products for the production of a sustainable high-strength geopolymer concrete(2023) Jayanthi, V.; Avudaiappan, Siva; Amran, Mugahed; Arunachalam, Krishna Prakash; Qader, Diyar N.; Delgado, Manuel Chavez; Flores, Erick I. Saavedra; Rashid, Raizal S. M.Micronized biomass silica (MBS) and ground granulated blast furnace slag (GGBS) are agro-industrial byproducts generated by incinerating of rice husk (grinding in jar mill) and blast fur-naces that used produce iron, respectively. MBS accounts for 20% of the world's total paddy output of 590 million tons. These by-products (MBS and GGBS) have a high concentration of amorphous silica, which is utilized as a mineral additive in concrete. This amorphous silica in-teracts with hydration products, resulting in the formation of additional CSH gel. This improves concrete's strength and durability properties. Therefore, it is proven that inclusion of agro-industrial by-products in concrete helps to promote sustainable and greener development, which in turn reduces carbon footprints and waste that must be disposed of in landfills. There have been few investigations on concrete using MBS and demonstrated the great potential of employing MBS as a cement substitute or additive in normal concrete. Also, the utilization of MBS as partial replace to GGBS in geopolymer concrete (GPC) with different molarity is a novel aspect of this study. However, this study has the aim and limit to develop a high-strength eco-friendly GPC with agro-industrial byproducts (MBS and GGBS) for use in sustainable construction. The impact of incorporating MBS as a partial replacement of GGBS on compressive and split tensile strengths, sorptivity, and chloride permeability was tested up to the age of 28 days. MBS was used to replace GGBS in varying percentages in the preparation of concretes. MBS were used in con-crete at 0%, 10%, 20%, and 30% replacement by weight. It was discovered that a GPC combination containing MBS 20% and the balance GGBS as the binder had the best performance in terms of its strength and durability. The compressive strengths of all GPC mixtures exceeded the intended design strength. The main findings of this study demonstrated clearly that MBS may be employed as a binder in the production of GPC.
- ItemInnovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar(2023) Avudaiappan, Siva; Cendoya, Patricio; Arunachalam, Krishna Prakash; Maureira-Carsalade, Nelson; Canales, Cristian; Amran, Mugahed; Parra, Pablo F.Due to the COVID-19 epidemic, biomedical waste management has overwhelmed both developed and developing nations. It is now a critical issue that has to be addressed with minimal possible adverse impact on the environment. This study introduced a technique of recycling face masks into polypropylene fibers for use in concrete. This proposed recycling process provides complete disinfection of contaminated clinical waste and offers the opportunity to transform the characteristics of an end product. Microfibers manufactured from recycled medical masks were subjected to testing. According to the results, polypropylene is the primary component of this research program. Two batches of concrete were made, one with the inclusion of masks as polypropylene fibers and another that performed as a control mix. The modified mortar was compared to the control mix in split tensile, flexure, compressive strength, and water absorption. Compressive strength was found to be improved by about 17%, and tensile strength to be increased by around 22% when mask fibers were incorporated. This research introduced a novel approach for disposing of waste masks and established the preliminary viability of upcycling trash face masks towards mortar concrete production.
- ItemInvestigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites(2023) Mohan, Abisha; Priya, Retnam Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Maureira-Carsalade, Nelson; Roco-Videla, AngelThe only biotic factor that can satisfy the needs of human species are plants. In order to minimize plastic usage and spread an immediate require of environmental awareness, the globe urges for the development of green composite materials. Natural fibers show good renewability and sustainability and are hence utilized as reinforcements in polymer matrix composites. The present work concerns on the usage of Butea parviflora fiber (BP), a green material, for high end applications. The study throws light upon the characterization of raw and potassium hydroxide (KOH)-treated Butea Parviflora plant, where its physical, structural, morphological, mechanical, and thermal properties are analyzed using the powder XRD, FTIR spectroscopy, FESEM micrographs, tensile testing, Tg-DTA, Thermal conductivity, Chemical composition, and CHNS analysis. The density values of untreated and KOH-treated fibers are 1.238 g/cc and 1.340 g/cc, respectively. The crystallinity index of the treated fiber has significantly increased from 83.63% to 86.03%. The cellulose content of the treated fiber also experienced a substantial increase from 58.50% to 60.72%. Treated fibers exhibited a reduction in both hemicelluloses and wax content. Spectroscopic studies registered varying vibrations of functional groups residing on the fibers. SEM images distinguished specific changes on the raw and treated fiber surfaces. The Availability of elements Carbon, Nitrogen, and Hydrogen were analyzed using the CHNS studies. The tensile strength and modulus of treated fibers has risen to 192.97 MPa and 3.46 Gpa, respectively. Thermal conductivity (K) using Lee's disc showed a decrement in the K values of alkalized BP. The activation energy Ea lies between 55.95 and 73.15 kJ/mol. The fibers can withstand a good temperature of up to 240 & DEG;C, presenting that it can be tuned in for making sustainable composites.
- ItemInvestigation on Properties of Raw and Alkali Treated Novel Cellulosic Root Fibres of Zea Mays for Polymeric Composites(2023) Kavitha, S. Anne; Priya, R. Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Maureira-Carsalade, Nelson; Roco-Videla, AngelToday, new materials based on natural fibres have been emerging day by day to completely eradicate plastics to favour our environmental nature. In this view, the present work is based on the extraction and characterisation of the novel root fibres of the Zea mays (Zm) plant, grown by the hydroponic method. Both the dried untreated and alkali treated root fibres are investigated using a variety of structural, morphological, thermal, elemental and mechanical tests by subjecting both the samples to p-XRD, FT-IR, SEM-EDAX, TGA-DTA, CHNS and tensile strength analyses. Thermal conductivity of the untreated and treated fibres is found using Lee's disc experiment. From p-XRD analysis, the Crystallinity Index, Percentage Crystallinity and Crystallite size of the samples are found. FT-IR studies clarify the different vibrational groups associated with the fibre samples. SEM images show that the surface roughness increases for the chemically treated samples, such that it may be effectively utilised as reinforcement for polymeric composites. The diameter of the fibre samples is found using SEM analysis. According to the EDAX spectrum, Zm fibres in both their raw and processed forms have high levels of Carbon (C) and Oxygen (O). The TGA-DTA tests revealed that the samples of natural fibre have good thermal characteristics. CHNS studies show that Carbon content is high for these samples, which is the characteristic of many natural fibres. Chemical analysis is used to ascertain the prepared samples' chemical makeup. It reveals that both samples have significant amounts of cellulose. The density of the fibres is found to be in the range 0.3-0.6 g/cc, which is much less than any other natural fibre. Therefore, it can be used in light weight applications. From the tensile strength analysis, physical properties such as Young's modulus and micro-fibril angle are determined. The fibres in the roots exhibit a lower tensile strength. Thus, these fibres can be used in powdered form as reinforcement for natural rubber or epoxy composites. After examining all of its properties, it could be reasonably speculated that Zea mays root fibres can be considered as an efficient reinforcement for various matrices to produce attractive bio-composites.