Browsing by Author "Arrazola, Macarena S."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAxonal Degeneration Is Mediated by Necroptosis Activation(2019) Arrazola, Macarena S.; Saquel, Cristian; Catalan, Romina J.; Barrientos, Sebastian A.; Hernandez, Diego E.; Martinez, Nicolas W.; Catenaccio, Alejandra; Court, Felipe A.Axonal degeneration, which contributes to functional impairment in several disorders of the nervous system, is an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but researchers have so far been unable to identify an integrative signaling pathway activating this self-destructive process. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell-death mechanism implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral nervous system and CNS of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock-down of RIPK3, a second key regulator of necroptosis, and the downstream effector MLKL (Mixed Lineage Kinase Domain-Like). RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons, but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was made evident by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, thus defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.
- ItemNecroptosis inhibition counteracts neurodegeneration, memory decline, and key hallmarks of aging, promoting brain rejuvenation(2023) Arrazola, Macarena S.; Lira, Matias; Veliz-Valverde, Felipe; Quiroz, Gabriel; Iqbal, Somya; Eaton, Samantha L.; Lamont, Douglas J.; Huerta, Hernan; Ureta, Gonzalo; Bernales, Sebastian; Cardenas, J. Cesar; Cerpa, Waldo; Wishart, Thomas M.; Court, Felipe A.Age is the main risk factor for the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction, and cognitive disabilities in humans, primates, rodents, and invertebrates. Necroptosis mediates degeneration of injured axons, but whether necroptosis triggers neurodegeneration and cognitive impairment along aging is unknown. Here, we show that the loss of the necroptotic effector Mlkl was sufficient to delay age-associated axonal degeneration and neuroinflammation, protecting against decreased synaptic transmission and memory decline in aged mice. Moreover, short-term pharmacologic inhibition of necroptosis targeting RIPK3 in aged mice, reverted structural and functional hippocampal impairment, both at the electrophysiological and behavioral level. Finally, a quantitative proteomic analysis revealed that necroptosis inhibition leads to an overall improvement of the aged hippocampal proteome, including a subclass of molecular biofunctions associated with brain rejuvenation, such as long-term potentiation and synaptic plasticity. Our results demonstrate that necroptosis contributes to age-dependent brain degeneration, disturbing hippocampal neuronal connectivity, and cognitive function. Therefore, necroptosis inhibition constitutes a potential geroprotective strategy to treat age-related disabilities associated with memory impairment and cognitive decline.
- ItemThe Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo(2015) Nogueras de Minniti, Alicia Susana; Arrazola, Macarena S.; Bravo Zehnder, Marcela; Ramos, Francisca; Inestrosa Cantín, Nibaldo; Aldunate, Rebeca
- ItemWnt5a promotes hippocampal postsynaptic development and GluN2B-induced expression via the eIF2α HRI kinase(2021) Ramos-Fernandez, Eva; Arrazola, Macarena S.; Oliva, Carolina A.; Arredondo, Sebastian B.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.Wnt signaling plays a key role in neurodevelopment and neuronal maturation. Specifically, Wnt5a stimulates postsynaptic assemblies, increases glutamatergic neurotransmission and, through calcium signaling, generates nitric oxide (NO). Trying to unveil the molecular pathway triggering these postsynaptic effects, we found that Wnt5a treatment induces a time-dependent increases in the length of the postsynaptic density (PSD), elicits novel synaptic contacts and facilitates F-actin flow both in in vitro and ex vivo models. These effects were partially abolished by the inhibition of the Heme-regulated eukaryotic initiation factor 2 alpha (HRI) kinase, a kinase which phosphorylates the initiation translational factor eIF2 alpha. When phosphorylated, eIF2 alpha normally avoids the translation of proteins not needed during stress conditions, in order to avoid unnecessary energetic expenses. However, phosphorylated eIF2 alpha promotes the translation of some proteins with more than one open reading frame in its 5 ' untranslated region. One of these proteins targeted by Wnt-HRI-eIF2 alpha mediated translation is the GluN2B subunit of the NMDA receptor. The identified increase in GluN2B expression correlated with increased NMDA receptor function. Considering that NMDA receptors are crucial for excitatory synaptic transmission, the molecular pathway described here contributes to the understanding of the fast and plastic translational mechanisms activated during learning and memory processes.