• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Arias Olivares, Ignacio Javier"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Assessing system-level synergies between photovoltaic and proton exchange membrane electrolyzers for solar-powered hydrogen production
    (2024) Arias Olivares, Ignacio Javier; G. Battisti, Felipe; Romero Ramos, J. A.; Pérez, Manuel; Valenzuela, Loreto; Cardemil Iglesias, José Miguel; Escobar Moragas, Rodrigo Alfonso
    This study delves into the techno-economic benefits of integrating Proton Exchange Membrane electrolyzers with photovoltaic systems for hydrogen production, with a keen focus on cost optimization strategies. A comprehensive analysis of several system scales and cost scenarios unveils the critical roles of Proton Exchange Membrane stack systems and the Balance of Plant components in influencing capital expenditures. Notably, the research identifies that incorporating the grid via a complementary Power Purchase Agreement, alongside clipped solar energy, innovatively redistributes cost elements. This approach significantly reduces the levelized cost of hydrogen, thereby enabling the feasibility of hydrogen production in regions characterized by low solar radiation at the cost of high grid electricity penetration. Sensitivity to energy costs, accentuated by different integration schemes, highlights the pivotal role of the stack cost and the Balance of Plant cost reductions in achieving economic viability for large-scale deployments. The study underscores the necessity of holistic cost optimization, revealing that strategic grid support coupled with solar energy enhances the techno-economic performance and broadens the scope for renewable hydrogen production in less favorable locales. These insights offer invaluable guidance to stakeholders, advocating for advanced integration strategies that promise both efficiency and financial sustainability in the burgeoning field of renewable hydrogen production systems.
  • Loading...
    Thumbnail Image
    Item
    Green Hydrogen Cogeneration Through Solid-Particle Concentrated Solar Power System Integrated With Proton Exchange Membrane Stacks
    (2025) Arias Olivares, Ignacio Javier; Gesser Battisti, Felipe; Cardemil, José M.; Valenzuela, Loreto; Escobar, Rodrigo
    This paper presents a techno-economic analysis of third-generation (Gen3) Concentrated Solar Power (CSP) systems using solid particles and Proton Exchange Membrane (PEM) stacks for green hydrogen production. The study assesses the Levelized Cost of Hydrogen (LCOH2) as a key metric. A 100 MWe CSP plant can achieve a LCOE of 55-60 $/MWh, with a Solar Multiple (SM) of 3 and Thermal Energy Storage (TES) capacity between 7 h and 16 h. Results show that a 1:1 ratio between PEM and CSP capacities is not needed to optimize hydrogen production, enabling hybrid schemes for electricity and hydrogen co-generation. However, the achieved LCOH2 does not meet IEA’s 2030 target of below 4 $/kg-H2. Key challenges include reducing PEM costs for large-scale applications and ensuring a cost of electricity below 55 $/MWh. Addressing these issues will be crucial for the economic viability of Gen3 CSP+PEM systems in the transition to sustainable hydrogen production.
  • No Thumbnail Available
    Item
    Performance and Techno-Economic Comparison Between Solid-Particle and Molten Salt Concentrated Solar Power Systems
    (2025) Arias Olivares, Ignacio Javier; Gesser Battisti, Felipe; Cardemil Iglesias, José Miguel; Castillejo Cuberos, Armando; Escobar Moragas, Rodrigo Alfonso
    This work presents a comprehensive comparative analysis of second-generation (Gen2) and third-generation (Gen3) concentrated solar power (CSP) technologies. The study focuses on their techno-economic performance across three diverse geographical locations: Carrera Pinto, Patache, and Santiago, in Chile. The assessment involves detailed modelling of key subsystems, including the central receiver and power block, considering daily variations and the effects of weather conditions. The results reveal that Gen2 CSP technology can achieve competitive levelized cost of energy (LCOE) values when incorporating projected cost reductions. Notably, Gen3 CSP, using solid particles as the heat transfer medium, exhibits substantial advantages due to its operation at higher temperatures (~800°C). The study also underscores the influence of local climatic conditions on CSP performance. The findings suggest that improved cost projections can render previously less attractive sites, such as Patache and Santiago, viable options for CSP deployment, underscoring the evolving landscape of renewable energy technologies.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback