• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Araus, Karina A."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cosolvent effect of ethanol on the solubility of lutein in supercritical carbon dioxide
    (2019) Araus, Karina A.; Casado, Víctor; Del Valle Lladser, José Manuel; Robert Canales, Paz Soledad; De la Fuente, Juan C.
  • Loading...
    Thumbnail Image
    Item
    Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide
    (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2012) Araus, Karina A.; del Valle, Jose M.; Robert, Paz S.; de la Fuente, Juan C.
    This manuscript presents new phase equilibrium data for capsanthin in pure and triolein-entrained Supercritical (SC) carbon dioxide (CO2). The aim of the work was to determine the cosolvent effect of triolein on capsanthin by comparing solubility results in a ternary (CO2 + triolein + capsanthin) system and binary (CO2 + capsanthin) system at (313 or 333) K and (19 to 34) MPa. For this, authors isolated capsanthin from red pepper (Capsicum annuum L.) and tested it using a dynamic-analytical method in an apparatus with recirculation and online analysis of the CO2-rich phase. Within the experimental region, the solubility of capsanthin in pure SC-CO2 increased with system temperature at isobaric conditions and also increased with pressure at isothermal conditions. Solubilities ranged from a minimal of 0.65 mu mol/mol at 313 K and 19 MPa to a maximal of 1.97 mu mol/mol at 333 K and 32 MPa. The concentration of triolein in the ternary system was equivalent to that its solubility in pure SC-CO2 depending on system temperature and pressure conditions. Crossover pressure was determined experimentally at 29.6 MPa, below which solubility of triolein decreased with temperature (effect of density). Above the crossover pressure, solubility of triolein increased with temperature (vapor pressure effect). Values of solubility within this range were 0.16 mmol/mol at 19 MPa and 313 K to 0.41 mmol/mol at 33 MPa and 333 K. Independent of system temperature and pressure, capsanthin solubility in triolein-entrained SC-CO2 increased by a factor of about 3 (triolein-induced enhancement factor) as compared to its solubility in pure CO2, under similar conditions of pressure and temperature. The maximal solubility of capsanthin in SC-CO2 experimentally observed in this study was 5.27 mu mol/mol at 333 K and 33 MPa in the presence of 4.10 mmol/mol triolein. (C) 2012 Elsevier Ltd. All rights reserved.
  • No Thumbnail Available
    Item
    Measurement and modeling of high-pressure (vapor plus liquid) equilibria of (CO2 + alkanol) binary systems
    (2011) Bejarano, Arturo; Gutierrez, Jorge E.; Araus, Karina A.; de la Fuente, Juan C.
    Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Item
    Solubility of beta-carotene in ethanol- and triolein-modified CO2
    (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2011) Araus, Karina A.; Canales, Roberto I.; del Valle, Jose M.; de la Fuente, Juan C.
    Modification of an experimental device and methodology improved speed and reproducibility of measurement of solubility of beta-carotene in pure and modified SuperCritical (SC) CO2 at (313 to 333) K. Solubilities of beta-carotene in pure CO2 at (17 to 34) MPa ranged (0.17 to 1.06) mu mol/mol and agreed with values reported in literature. The solubility of beta-carotene in CO2 modified with (1.2 to 1.6) % mol ethanol increased by a factor of 1.7 to 3.0 as compared to its solubility in pure CO2 under equivalent conditions. The concentration of triolein in equilibrated ternary (CO2 + beta-carotene + triolein) mixtures having excess triolein reached values (0.01 to 0.39) mmol/mol corresponding to its solubility in pure SC CO2 under equivalent conditions. Under these conditions, the solubility of beta-carotene in triolein-modified CO2 increased by a factor of up to 4.0 in relation with its solubility in pure CO2 at comparable system temperature and pressure, reaching an uppermost value of 3.3 mu mol/mol at 333 K and 32 MPa. Unlike in the case of ethanol, where enhancements in solubility where relatively independent on system conditions, solubility enhancements using triolein as co-solvent increased markedly with system pressure, being larger than using (1.2 to 1.6)% mol ethanol at about (24 to 28) MPa, depending on system temperature. The increase in the solubility beta-carotene in SC CO2 as a result of using ethanol or triolein as co-solvent apparently does not depend on the increase in density associated with the dissolution of the co-solvent in CO2. Enhancements may be due to an increase in the polarizability of SC CO2, which possibly growths markedly as triolein dissolves in it when the system pressure becomes higher. (C) 2011 Elsevier Ltd. All rights reserved.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback