Browsing by Author "Arancibia, Duxan"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAn Early Disturbance in Serotonergic Neurotransmission Contributes to the Onset of Parkinsonian Phenotypes in Drosophila melanogaster(MDPI, 2022) Zárate Canales, Rafaella Victoria; Hidalgo, Sergio; Navarro, Nicole; Molina Mateo, Daniela Francisca; Arancibia, Duxan; Rojo Cortés, Francisca Rayén; Oliva, Carlos; Andrés Coke, María Estela; Zamorano, Pedro; Campusano Astorga, Jorge MauricioParkinson's disease (PD) is a neurodegenerative disease characterized by motor symptoms and dopaminergic cell loss. A pre-symptomatic phase characterized by non-motor symptoms precedes the onset of motor alterations. Two recent PET studies in human carriers of mutations associated with familial PD demonstrate an early serotonergic commitment-alteration in SERT binding-before any dopaminergic or motor dysfunction, that is, at putative PD pre-symptomatic stages. These findings support the hypothesis that early alterations in the serotonergic system could contribute to the progression of PD, an idea difficult to be tested in humans. Here, we study some components of the serotonergic system during the pre-symptomatic phase in a well-characterized Drosophila PD model, Pink1(B9) mutant flies. We detected lower brain serotonin content in Pink1(B9) flies, accompanied by reduced activity of SERT before the onset of motor dysfunctions. We also explored the consequences of a brief early manipulation of the serotonergic system in the development of motor symptoms later in aged animals. Feeding young Pink1(B9) flies with fluoxetine, a SERT blocker, prevents the loss of dopaminergic neurons and ameliorates motor impairment observed in aged mutant flies. Surprisingly, the same pharmacological manipulation in young control flies results in aged animals exhibiting a PD-like phenotype. Our findings support that an early dysfunction in the serotonergic system precedes and contributes to the onset of the Parkinsonian phenotype in Drosophila.
- ItemCDNF induces the adaptive unfolded protein response and attenuates endoplasmic reticulum stress-induced cell death(2018) Arancibia, Duxan; Zamorano, Pedro; Estela Andres, Maria
- ItemEvolution of lysine-specific demethylase 1 and REST corepressor gene families and their molecular interaction(2023) Olivares-Costa, Montserrat; Oyarzun, Gianluca Merello; Verbel-Vergara, Daniel; Gonzalez, Marcela P.; Arancibia, Duxan; Andres, Maria E.; Opazo, Juan C.Lysine-specific demethylase 1A (LSD1) binds to the REST corepressor (RCOR) protein family of corepressors to erase transcriptionally active marks on histones. Functional diversity in these complexes depends on the type of RCOR included, which modulates the catalytic activity of the complex. Here, we studied the duplicative history of the RCOR and LSD gene families and analyzed the evolution of their interaction. We found that RCOR genes are the product of the two rounds of whole-genome duplications that occurred early in vertebrate evolution. In contrast, the origin of the LSD genes traces back before to the divergence of animals and plants. Using bioinformatics tools, we show that the RCOR and LSD1 interaction precedes the RCOR repertoire expansion that occurred in the last common ancestor of jawed vertebrates. Overall, we trace LSD1-RCOR complex evolution and propose that animal non-model species offer advantages in addressing questions about the molecular biology of this epigenetic complex.
- ItemOPA1 Modulates Mitochondrial Ca2+ Uptake Through ER-Mitochondria Coupling(FRONTIERS MEDIA SA, 2022) Cartes Saavedra, Benjamin; Macuada, Josefa; Lagos, Daniel; Arancibia, Duxan; Andres, Maria E.; Yu Wai Man, Patrick; Hajnoczky, Gyoergy; Eisner, VeronicaAutosomal Dominant Optic Atrophy (ADOA), a disease that causes blindness and other neurological disorders, is linked to OPA1 mutations. OPA1, dependent on its GTPase and GED domains, governs inner mitochondrial membrane (IMM) fusion and cristae organization, which are central to oxidative metabolism. Mitochondrial dynamics and IMM organization have also been implicated in Ca2+ homeostasis and signaling but the specific involvements of OPA1 in Ca2+ dynamics remain to be established. Here we studied the possible outcomes of OPA1 and its ADOA-linked mutations in Ca2+ homeostasis using rescue and overexpression strategies in Opa1-deficient and wild-type murine embryonic fibroblasts (MEFs), respectively and in human ADOA-derived fibroblasts. MEFs lacking Opa1 required less Ca2+ mobilization from the endoplasmic reticulum (ER) to induce a mitochondrial matrix [Ca2+] rise ([Ca2+](mito)). This was associated with closer ER-mitochondria contacts and no significant changes in the mitochondrial calcium uniporter complex. Patient cells carrying OPA1 GTPase or GED domain mutations also exhibited altered Ca2+ homeostasis, and the mutations associated with lower OPA1 levels displayed closer ER-mitochondria gaps. Furthermore, in Opa1(-/-) MEF background, we found that acute expression of OPA1 GTPase mutants but no GED mutants, partially restored cytosolic [Ca2+] ([Ca2+](cyto)) needed for a prompt [Ca2+](mito) rise. Finally, OPA1 mutants' overexpression in WT MEFs disrupted Ca2+ homeostasis, partially recapitulating the observations in ADOA patient cells. Thus, OPA1 modulates functional ER-mitochondria coupling likely through the OPA1 GED domain in Opa1(-/-) MEFs. However, the co-existence of WT and mutant forms of OPA1 in patients promotes an imbalance of Ca2+ homeostasis without a domain-specific effect, likely contributing to the overall ADOA progress.
- ItemOptimization of the Light-On system in a lentiviral platform to a light-controlled expression of genes in neurons(2021) Zarate, Rafaella, V; Arancibia, Duxan; Fernandez, Anllely; Signorelli, Janetti R.; Larrondo, Luis F.; Estela Andres, Maria; Zamorano, PedroBackground: Molecular brain therapies require the development of molecular switches to control gene expression in a limited and regulated manner in time and space. Light-switchable gene systems allow precise control of gene expression with an enhanced spatio-temporal resolution compared to chemical inducers. In this work, we adapted the existing light-switchable Light-On system into a lentiviral platform, which consists of two modules: (i) one for the expression of the blue light-switchable transactivator GAVPO and (ii) a second module containing an inducible-UAS promoter (UAS) modulated by a light-activated GAVPO.
- ItemSelective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons(2021) Torres, Viviana I.; Barrera, Daniela P.; Varas-Godoy, Manuel; Arancibia, Duxan; Inestrosa, Nibaldo C.The Wnt signaling pathway induces various responses underlying the development and maturation of the nervous system. Wnt ligands are highly hydrophobic proteins that limit their diffusion through an aqueous extracellular medium to a target cell. Nevertheless, their attachment to small extracellular vesicles-like exosomes is one of the described mechanisms that allow their transport under this condition. Some Wnt ligands in these vehicles are expected to be dependent on post-translational modifications such as acylation. The mechanisms determining Wnt loading in exosomes and delivery to the target cells are largely unknown. Here, we took advantage of a cell model that secret a highly enriched population of small extracellular vesicles (sEVs), hippocampal HT-22 neurons. First, to establish the cell model, we characterized the morphological and biochemical properties of an enriched fraction of sEVs obtained from hippocampal HT-22 neurons that express NCAM-L1, a specific exosomal neuronal marker. Transmission electron microscopy showed a highly enriched fraction of exosome-like vesicles. Next, the exosomal presence of Wnt3a, Wnt5a, and Wnt7a was confirmed by western blot analysis and electron microscopy combined with immunogold. Also, we studied whether palmitoylation is a necessary post-translational modification for the transport Wnt in these vesicles. We found that proteinase-K treatment of exosomes selectively decreased their Wnt5a and Wnt7a content, suggesting that their expression is delimited to the exterior membrane surface. In contrast, Wnt3a remained attached, suggesting that it is localized within the exosome lumen. On the other hand, Wnt-C59, a specific inhibitor of porcupine O-acyltransferase (PORCN), decreased the association of Wnt with exosomes, suggesting that Wnt ligand acylation is necessary for them to be secreted by exosomes. These findings may help to understand the action of the Wnt ligands in the target cell, which could be defined during the packaging of the ligands in the secretory cell sEVs.
- ItemSerine-Arginine Protein Kinase SRPK2 Modulates the Assembly of the Active Zone Scaffolding Protein CAST1/ERC2(2019) Arancibia, Duxan; Lira, Matias; Cruz, Yocelin; Barrera, Daniela P.; Montenegro-Venegas, Carolina; Godoy, Juan A.; Garner, Craig C.; Inestrosa, Nibaldo C.; Gundelfinger, Eckart D.; Zamorano, Pedro; Torres, Viviana, INeurons release neurotransmitters at a specialized region of the presynaptic membrane, the active zone (AZ), where a complex meshwork of proteins organizes the release apparatus. The formation of this proteinaceous cytomatrix at the AZ (CAZ) depends on precise homo- and hetero-oligomerizations of distinct CAZ proteins. The CAZ protein CAST1/ERC2 contains four coiled-coil (CC) domains that interact with other CAZ proteins, but also promote self-assembly, which is an essential step for its integration during AZ formation. The self-assembly and synaptic recruitment of the Drosophila protein Bruchpilot (BRP), a partial homolog of CAST1/ERC2, is modulated by the serine-arginine protein kinase (SRPK79D). Here, we demonstrate that overexpression of the vertebrate SRPK2 regulates the self-assembly of CAST1/ERC2 in HEK293T, SH-SY5Y and HT-22 cells and the CC1 and CC4 domains are involved in this process. Moreover, the isoform SRPK2 forms a complex with CAST1/ERC2 when co-expressed in HEK293T and SH-SY5Y cells. More importantly, SRPK2 is present in brain synaptic fractions and synapses, suggesting that this protein kinase might control the level of self-aggregation of CAST1/ERC2 in synapses, and thereby modulate presynaptic assembly.