Browsing by Author "Andrade, David C."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemCarbamylated form of human erythropoietin normalizes cardiorespiratory disorders triggered by intermittent hypoxia mimicking sleep apnea syndrome(LIPPINCOTT WILLIAMS & WILKINS, 2021) Andrade, David C.; Toledo, Camilo; Diaz, Hugo S.; Pereyra, Katherin, V; Schwarz, Karla G.; Diaz Jara, Esteban; Melipillan, Claudia; Rios Gallardo, Angelica P.; Uribe Ojeda, Atenea; Alcayaga, Julio; Quintanilla, Rodrigo A.; Iturriaga, Rodrigo; Richalet, Jean Paul; Voituron, Nicolas; Del Rio, RodrigoBackground and objective: Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders. We aimed to determine whether cEpo normalized the CIH-enhanced carotid body ventilatory chemoreflex, the hypertension and ventilatory disorders in rats. Methods: Male Sprague-Dawley rats (250 g) were exposed to CIH (5% O-2, 12/h, 8 h/day) for 28 days. cEPO (20 mu g/kg, i.p) was administrated from day 21 every other day for one more week. Cardiovascular and respiratory function were assessed in freely moving animals. Results: Twenty-one days of CIH increased carotid body-mediated chemoreflex responses as evidenced by a significant increase in the hypoxic ventilatory response (FiO2 10%) and triggered irregular eupneic breathing, active expiration, and produced hypertension. cEpo treatment significantly reduced the carotid body--chemoreflex responses, normalizes breathing patterns and the hypertension in CIH. In addition, cEpo treatment effectively normalized carotid body chemosensory responses evoked by acute hypoxic stimulation in CIH rats. Conclusion: Present results strongly support beneficial cardiorespiratory therapeutic effects of cEpo during CIH exposure.
- ItemCardiorespiratory alterations following intermittent photostimulation of RVLM C1 neurons: Implications for long-term blood pressure, breathing and sleep regulation in freely moving rats(2022) Toledo, Camilo; Andrade, David C.; Diaz-Jara, Esteban; Ortolani, Domiziana; Bernal-Santander, Ignacio; Schwarz, Karla G.; Ortiz, Fernando C.; Marcus, Noah J.; Oliveira, Luiz M.; Takakura, Ana C.; Moreira, Thiago S.; Del Rio, RodrigoAim Sympathoexcitation and sleep-disordered breathing are common contributors for disease progression. Catecholaminergic neurons from the rostral ventrolateral medulla (RVLM-C1) modulate sympathetic outflow and have anatomical projections to respiratory neurons; however, the contribution of highly selective activation of RVLM-C1 neurons on long-term autonomic and breathing (dys)regulation remains to be understood. Methods To explore this relationship, a lentiviral vector carrying the light-sensitive cation channel channelrhodopsin-2 (LVV-PRSX8-ChR2-YFP) was unilaterally injected into the RVLM of healthy rats. On the contralateral side, LVV-PRSX8-ChR2-YFP was co-injected with a specific immunotoxin (D beta H-SAP) targeted to eliminate C1 neurons. Results Intermittent photostimulation of RVLM-C1 in vivo, in unrestrained freely moving rats, elicited long-term facilitation of the sympathetic drive, a rise in blood pressure and sympatho-respiratory coupling. In addition, photoactivation of RVLM-C1 induced long-lasting ventilatory instability, characterized by oscillations in tidal volume and increased breathing variability, but only during non-rapid eye movement sleep. These effects were not observed when photostimulation of the RVLM was performed in the presence of D beta H-SAP toxin. Conclusions The finding that intermittent activation of RVLM-C1 neurons induces autonomic and breathing dysfunction suggest that episodic stimulation of RVLM-C1 may serve as a pathological substrate for the long-term development of cardiorespiratory disorders.
- ItemCardiorespiratory optimal point as a submaximal evaluation tool in endurance athletes: An exploratory study(2023) Oyarzo-Aravena, Alexis; Arce-Alvarez, Alexis; Salazar-Ardiles, Camila; Ramirez-Campillo, Rodrigo; Alvarez, Cristian; Toledo, Camilo; Izquierdo, Mikel; Andrade, David C.Introduction: The cardiorespiratory optimal point (COP) represents the lowest minute ventilation to oxygen consumption ratio (VE/VO2) and can be estimated during a CPET at submaximal intensity when an exercise test until volitional fatigue is not always advisable (i.e., a conflict zone where you cannot be confident of the security because near-competition, off-season, among other). COP's physiological components have not been wholly described yet. Therefore, this study seeks to identify the determinants of COP in highly trained athletes and its influence on maximum and sub-maximum variables during CPET through principal c omponent analysis (PCA) (explains the dataset's variance).Methods: Female (n = 9; age, 17.4 +/- 3.1 y; maximal VO2 [VO2max]), 46.2 +/- 5.9 mL/kg/min) and male (n = 24; age, 19.7 +/- 4.0 y; VO2max, 56.1 +/- 7.6 mL/kg/min) athletes performed a CPET to determine the COP, ventilatory threshold 1 (VT1) and 2 (VT2), and VO2max. The PCA was used to determine the relationship between variables and COP, explaining their variance.Results: Our data revealed that females and males displayed different COP values. Indeed, males showed a significant diminished COP compared to the female group (22.6 +/- 2.9 vs. 27.2 +/- 3.4 VE/VO2, respectively); nevertheless, COP was allocated before VT1 in both groups.Discussion: PC analysis revealed that the COP variance was mainly explained (75.6%) by PC1 (expired CO2 at VO2max) and PC2 (VE at VT2), possibly influencing cardiorespiratory efficiency at VO2max and VT2. Our data suggest that COP could be used as a submaximal index to monitor and assess cardiorespiratory system efficiency in endurance athletes. The COP could be particularly useful during the offseason and competitive periods and the return to the sports continuum.
- ItemDeep Learning-Based Glucose Prediction Models: A Guide for Practitioners and a Curated Dataset for Improved Diabetes Management(2024) Langarica, Saul; De La Vega, Diego; Cariman, Nawel; Miranda, Martin; Andrade, David C.; Nunez, Felipe; Rodriguez-Fernandez, MariaAccurate short- and mid-term blood glucose predictions are crucial for patients with diabetes struggling to maintain healthy glucose levels, as well as for individuals at risk of developing the disease. Consequently, numerous efforts from the scientific community have focused on developing predictive models for glucose levels. This study harnesses physiological data collected from wearable sensors to construct a series of data-driven models based on deep learning approaches. We systematically compare these models to offer insights for practitioners and researchers venturing into glucose prediction using deep learning techniques. Key questions addressed in this work encompass the comparison of various deep learning architectures for this task, determining the optimal set of input variables for accurate glucose prediction, comparing population-wide, fine-tuned, and personalized models, and assessing the impact of an individual's data volume on model performance. Additionally, as part of our outcomes, we introduce a meticulously curated dataset inclusive of data from both healthy individuals and those with diabetes, recorded in free-living conditions. This dataset aims to foster research in this domain and facilitate equitable comparisons among researchers.
- ItemEffect of chronic exogenous oxytocin administration on exercise performance and cardiovagal control in hypobaric hypoxia in rats(2024) Salazar-Ardiles, Camila; Cornejo, Carlos; Paz, Cristobal; Vasquez-Muñoz, Manuel; Arce-Alvarez, Alexis; Rodríguez Fernández, María; Millet, Gregoire P.; Izquierdo Redín, Mikel; Andrade, David C.Background Outstanding exercise performance has been associated with an exacerbated vagal outflow. Nevertheless, during high-altitude hypobaric-hypoxia (HH), there is a baroreflex-dependent parasympathetic withdrawal and exercise performance deterioration. Notably, vagal control is pivotal in exercise performance, and exogenous oxytocin (OXY) administration has been shown to enhance parasympathetic drive; however, no evidence shows their role in exercise performance during HH. Then, this study aimed to examine the effect of prolonged exogenous oxytocin (OXY) administration on exercise performance during hypobaric hypoxia (HH) in rats. Results A vehicle group (n = 6) and an OXY group (n = 6) performed incremental exercise and baroreflex tests during both normobaric normoxia (NN) and HH (PO2: 100 mmHg, simulated 3,500 m) prior (pre-) and after (post-) 14 days of administration. The results showed that at pre-, there were no significant differences in exercise performance between the two groups, while at post-, the OXY group exhibited similar performance between NN and HH, while the Vehicle group maintained a significant decline in performance at HH compared to NN. At post-, the Vehicle group also demonstrated a reset in the baroreflex and a worse bradycardic response in HH, which was reversed in the OXY group, while the hypoxic ventilatory response was similar in both groups. Conclusion The findings suggest prolonged OXY administration prevents impaired exercise performance and vagal control during short-term HH.
- ItemExercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive(2021) Andrade, David C.; Diaz-Jara, Esteban; Toledo, Camilo; Schwarz, Karla G.; Pereyra, Katherin V.; Diaz, Hugo S.; Marcus, Noah J.; Ortiz, Fernando C.; Rios-Gallardo, Angelica P.; Ortolani, Domiziana; Del Rio, RodrigoMounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF+EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF+EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF+EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (similar to 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF+EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.
- ItemExercise training reduces brainstem oxidative stress and restores normal breathing function in heart failure(2021) Diaz-Jara, Esteban; Diaz, Hugo S.; Rios-Gallardo, Angelica; Ortolani, Domiziana; Andrade, David C.; Toledo, Camilo; V. Pereyra, Katherin; Schwarz, Karla; Ramirez, Gigliola; Ortiz, Fernando C.; Andia, Marcelo E.; Del Rio, RodrigoEnhanced central chemoreflex drive and irregular breathing are both hallmarks in heart failure (HF) and closely related to disease progression. Central chemoreceptor neurons located within the retrotrapezoid nucleus (RTN) are known to play a role in breathing alterations in HF. It has been shown that exercise (EX) effectively reduced reactive oxygen species (ROS) in HF rats. However, the link between EX and ROS, particularly at the RTN, with breathing alterations in HF has not been previously addressed. Accordingly, we aimed to determine: i) ROS levels in the RTN in HF and its association with chemoreflex drive, ii) whether EX improves chemoreflex/breathing function by reducing ROS levels, and iii) determine molecular alterations associated with ROS generation within the RTN of HF rats and study EX effects on these pathways. Adult male Sprague-Dawley rats were allocated into 3 experimental groups: Sham (n = 5), volume overloaded HF (n = 6) and HF (n = 8) rats that underwent EX training for 6 weeks (60 min/day, 25 m/min, 10% inclination). At 8 weeks post-HF induction, breathing patterns and chemoreflex function were analyzed by unrestrained plethysmography. ROS levels and anti/pro-oxidant enzymes gene expression were analyzed in the RTN. Our results showed that HF rats have high ROS levels in the RTN which were closely linked to the enhanced central chemoreflex and breathing disorders. Also, HF rats displayed decreased expression of antioxidant genes in the RTN compared with control rats. EX training increases antioxidant defense in the RTN, reduces ROS formation and restores normal central chemoreflex drive and breathing regularity in HF rats. This study provides evidence for a role of ROS in central chemoreception in the setting of HF and support the use of EX to reduce ROS in the brainstem of HF animals and reveal its potential as an effective mean to normalize chemoreflex and breathing function in HF.
- ItemHypoxic Respiratory Chemoreflex Control in Young Trained Swimmers(2021) Arce-Alvarez, Alexis; Veliz, Carlos; Vazquez-Munoz, Manuel; von Igel, Magdalena; Alvares, Cristian; Ramirez-Campillo, Rodrigo; Izquierdo, Mikel; Millet, Gregoire P.; Del Rio, Rodrigo; Andrade, David C.During an apnea, changes in PaO2 activate peripheral chemoreceptors to increase respiratory drive. Athletes with continuous apnea, such as breath-hold divers, have shown a decrease in hypoxic ventilatory response (HVR), which could explain the long apnea times; however, this has not been studied in swimmers. We hypothesize that the long periods of voluntary apnea in swimmers is related to a decreased HVR. Therefore, we sought to determine the HVR and cardiovascular adjustments during a maximum voluntary apnea in young-trained swimmers. In fifteen trained swimmers and twenty-seven controls we studied minute ventilation (V-E), arterial saturation (SpO(2)), heart rate (HR), and autonomic response [through heart rate variability (HRV) analysis], during acute chemoreflex activation (five inhalations of pure N-2) and maximum voluntary apnea test. In apnea tests, the maximum voluntary apnea time and the end-apnea HR were higher in swimmers than in controls (p < 0.05), as well as a higher low frequency component of HRV (p < 0.05), than controls. Swimmers showed lower HVR than controls (p < 0.01) without differences in cardiac hypoxic response (CHR). We conclude that swimmers had a reduced HVR response and greater maximal voluntary apnea duration, probably due to decreased HVR.
- ItemInhibition of Brainstem Endoplasmic Reticulum Stress Rescues Cardiorespiratory Dysfunction in High Output Heart Failure(2021) Diaz, Hugo S.; Andrade, David C.; Toledo, Camilo; Schwarz, Karla G.; Pereyra, Katherin, V; Diaz-Jara, Esteban; Marcus, Noah J.; Del Rio, RodrigoRecent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload. High output HF was surgically induced via creation of an arterio-venous fistula in adult male Sprague-Dawley rats. Tauroursodeoxycholic acid (TUDCA), an inhibitor of ERS, or vehicle was administered intracerebroventricularly for 4 weeks post-HF induction. Compared with vehicle treatment, TUDCA improved cardiac autonomic balance (LFHRV/HFHRV ratio, 3.02 +/- 0.29 versus 1.14 +/- 0.24), reduced cardiac arrhythmia incidence (141.5 +/- 26.7 versus 35.67 +/- 12.5 events/h), and reduced abnormal respiratory patterns (Apneas: 11.83 +/- 2.26 versus 4.33 +/- 1.80 events/h). TUDCA administration (HF+Veh versus HF+TUDCA, P<0.05) attenuated cardiac hypertrophy (HW/BW 4.4 +/- 0.3 versus 4.0 +/- 0.1 mg/g) and diastolic dysfunction. Analysis of rostral ventrolateral medulla gene expression confirmed the presence of ERS, inflammation, and activation of renin-angiotensin system pathways in high output HF and showed that TUDCA treatment completely abolished ERS and ERS-related signaling. Taken together, these results support the notion that ERS plays a role in cardiorespiratory dysfunction in high output HF and more importantly that reducing brain ERS with TUDCA treatment has a potent salutary effect on cardiac function in this model.
- ItemMedullary astrocytes mediate irregular breathing patterns generation in chronic heart failure through purinergic P2X7 receptor signalling(2022) Toledo, Camilo; Diaz-Jara, Esteban; Diaz, Hugo S.; Schwarz, Karla G.; Pereyra, Katherin, V; Las Heras, Alexandra; Rios-Gallardo, Angelica; Andrade, David C.; Moreira, Thiago; Takakura, Ana; Marcus, Noah J.; Del Rio, RodrigoBackground Breathing disorders (BD) (apnoeas/hypopneas, periodic breathing) are highly prevalent in chronic heart failure (CHF) and are associated with altered central respiratory control. Ample evidence identifies the retrotrapezoid nucleus (RTN) as an important chemosensitivity region for ventilatory control and generation of BD in CHF, however little is known about the cellular mechanisms underlying the RTN/BD relationship. Within the RTN, astrocyte-mediated purinergic signalling modulates respiration, but the potential contribution of RTN astrocytes to BD in CHF has not been explored.
- ItemOscillatory pattern of glycemic control in patients with diabetes mellitus(2021) Vasquez-Munoz, Manuel; Arce-Alvarez, Alexis; von Igel, Magdalena; Veliz, Carlos; Ruiz-Esquide, Gonzalo; Ramirez-Campillo, Rodrigo; Alvarez, Cristian; Ramirez-Velez, Robinson; Crespo, Fernando A.; Izquierdo, Mikel; Del Rio, Rodrigo; Andrade, David C.Daily glucose variability is higher in diabetic mellitus (DM) patients which has been related to the severity of the disease. However, it is unclear whether glycemic variability displays a specific pattern oscillation or if it is completely random. Thus, to determine glycemic variability pattern, we measured and analyzed continuous glucose monitoring (CGM) data, in control subjects and patients with DM type-1 (T1D). CGM data was assessed for 6 days (day: 08:00-20:00-h; and night: 20:00-08:00-h). Participants (n =172; age =18-80 years) were assigned to T1D (n =144, females = 65) and Control (i.e., healthy; n = 28, females = 22) groups. Anthropometry, pharmacologic treatments, glycosylated hemoglobin (HbA1c) and years of evolution were determined. T1D females displayed a higher glycemia at 10:00-14:00-h vs. T1D males and Control females. DM patients displays mainly stationary oscillations (deterministic), with circadian rhythm characteristics. The glycemia oscillated between 2 and 6 days. The predictive model of glycemia showed that it is possible to predict hyper and hypoglycemia (R-2 =0.94 and 0.98, respectively) in DM patients independent of their etiology. Our data showed that glycemic variability had a specific oscillation pattern with circadian characteristics, with episodes of hypoglycemia and hyperglycemia at day phases, which could help therapeutic action for this population.
- ItemParaquat herbicide diminishes chemoreflex sensitivity, induces cardiac autonomic imbalance and impair cardiac function in rats(2021) Pereyra, Katherin, V; Schwarz, Karla G.; Andrade, David C.; Toledo, Camilo; Rios-Gallardo, Angelica; Diaz-Jara, Esteban; Bastias, Sussy S.; Ortiz, Fernando C.; Ortolani, Domiziana; Del Rio, RodrigoParaquat (PQT) herbicide is widely used in agricultural practices despite being highly toxic to humans. It has been proposed that PQT exposure may promote cardiorespiratory impairment. However, the physiological mechanisms involved in cardiorespiratory dysfunction following PQT exposure are poorly known. We aimed to determine the effects of PQT on ventilatory chemoreflex control, cardiac autonomic control, and cardiac function in rats. Male Sprague-Dawley rats received two injections/week of PQT (5 mg.kg(-1) ip) for 4 wk. Cardiac function was assessed through echocardiography and pressure-volume loops. Ventilatory function was evaluated using whole body plethysmography. Autonomic control was indirectly evaluated by heart rate variability (HRV). Cardiac electrophysiology (EKG) and exercise capacity were also measured. Four weeks of PQT administration markedly enlarged the heart as evidenced by increases in ventricular volumes and induced cardiac diastolic dysfunction. Indeed, end-diastolic pressure was significantly higher in PQT rats compared with control (2.42 +/- 0.90 vs. 4.01 +/- 0.92 mmHg, PQT vs. control, P < 0.05). In addition, PQT significantly reduced both the hypercapnic and hypoxic ventilatory chemoreflex response and induced irregular breathing. Also, PQT induced autonomic imbalance and reductions in the amplitude of EKG waves. Finally, PQT administration impaired exercise capacity in rats as evidenced by a similar to 2-fold decrease in times-to-fatigue compared with control rats. Our results showed that 4 wk of PQT treatment induces cardiorespiratory dysfunction in rats and suggests that repetitive exposure to PQT may induce harmful mid/long-term cardiovascular, respiratory, and cardiac consequences.
- ItemRostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats(2019) Toledo, Camilo; Andrade, David C.; Diaz, Hugo S.; Pereyra, Katherin V.; Schwarz, Karla G.; Diaz-Jara, Esteban; Oliveira, Luiz M.; Takakura, Ana C.; Moreira, Thiago S.; Schultz, Harold D.; Marcus, Noah J.; Del Rio, RodrigoKey points