Browsing by Author "Alves-Brito, A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA FIRST CONSTRAINT ON THE THICK DISK SCALE LENGTH: DIFFERENTIAL RADIAL ABUNDANCES IN K GIANTS AT GALACTOCENTRIC RADII 4, 8, AND 12 kpc(2011) Bensby, T.; Alves-Brito, A.; Oey, M. S.; Yong, D.; Melendez, J.Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13 kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10 kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L-thick = 2.0 kpc, assuming L-thin = 3.8 kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.
- ItemCNO and F abundances in the barium star HD 123396(2011) Alves-Brito, A.; Karakas, A. I.; Yong, D.; Melendez, J.; Vasquez, S.Context. Barium stars are moderately rare, chemically peculiar objects, which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB).
- ItemOn the Use of Field RR Lyrae as Galactic Probes. II. A New ΔS Calibration to Estimate Their Metallicity*(2021) Crestani, J.; Fabrizio, M.; Braga, V. F.; Sneden, C.; Preston, G.; Ferraro, I.; Iannicola, G.; Bono, G.; Alves-Brito, A.; Nonino, M.; D'Orazi, V.; Inno, L.; Monelli, M.; Storm, J.; Altavilla, G.; Chaboyer, B.; Dall'Ora, M.; Fiorentino, G.; Gilligan, C.; Grebel, E. K.; Lala, H.; Lemasle, B.; Marengo, M.; Marinoni, S.; Marrese, P. M.; Martinez-Vazquez, C. E.; Matsunaga, N.; Mullen, J. P.; Neeley, J.; Prudil, Z.; da Silva, R.; Stetson, P. B.; Thevenin, F.; Valenti, E.; Walker, A.; Zoccali, M.We performed the largest and most homogeneous spectroscopic survey of field RR Lyraes (RRLs). We secured 6300 high-resolution (HR, R similar to 35,000) spectra for 143 RRLs (111 fundamental, RRab; 32 first-overtone, RRc). The atmospheric parameters were estimated by using the traditional approach and the iron abundances were measured by using an LTE line analysis. The resulting iron distribution shows a well-defined metal-rich tail approaching solar iron abundance. This suggests that field RRLs experienced a complex chemical enrichment in the early halo formation. We used these data to develop a new calibration of the Delta S method. This diagnostic, based on the equivalent widths of Ca ii K and three Balmer (H-delta,H-gamma,H-beta) lines, traces the metallicity of RRLs. For the first time, the new empirical calibration: (i) includes spectra collected over the entire pulsation cycle; (ii) includes RRc variables; (iii) relies on spectroscopic calibrators covering more than three dex in iron abundance; and (iv) provides independent calibrations based on one/two/three Balmer lines. The new calibrations were applied to a data set of both SEGUE-SDSS and degraded HR spectra totalling 6451 low-resolution (R similar to 2000) spectra for 5001 RRLs (3439 RRab, 1562 RRc). This resulted in an iron distribution with a median eta = -1.55 0.01 and sigma = 0.51 dex, in good agreement with literature values. We also found that RRc are 0.10 dex more metal-poor than RRab variables, and have a distribution with a smoother metal-poor tail. This finding supports theoretical prescriptions suggesting a steady decrease in the RRc number when moving from metal-poor to metal-rich stellar environments.
- ItemOn the Use of Field RR Lyrae as Galactic Probes. III. The α-element Abundances*(2021) Crestani, J.; Braga, V. F.; Fabrizio, M.; Bono, G.; Sneden, C.; Preston, G.; Ferraro, I.; Iannicola, G.; Nonino, M.; Fiorentino, G.; Thevenin, F.; Lemasle, B.; Prudil, Z.; Alves-Brito, A.; Altavilla, G.; Chaboyer, B.; Dall'Ora, M.; D'Orazi, V.; Gilligan, C.; Grebel, E. K.; Koch-Hansen, A. J.; Lala, H.; Marengo, M.; Marinoni, S.; Marrese, P. M.; Martinez-Vazquez, C.; Matsunaga, N.; Monelli, M.; Mullen, J. P.; Neeley, J.; da Silva, R.; Stetson, P. B.; Salaris, M.; Storm, J.; Valenti, E.; Zoccali, M.We provide the largest and most homogeneous sample of alpha-element (Mg, Ca, Ti) and iron abundances for field RR Lyrae (RRLs; 162 variables) by using high-resolution spectra. The current measurements were complemented with similar abundances available in the literature for 46 field RRLs brought to our metallicity scale. We ended up with a sample of old (t >= 10 Gyr), low-mass stellar tracers (208 RRLs: 169 fundamental, 38 first overtone, and 1 mixed mode) covering 3 dex in iron abundance (-3.00 <= [Fe/H] <= 0.24). We found that field RRLs are similar to 0.3 dex more alpha poor than typical halo tracers in the metal-rich regime ([Fe/H] >= -1.2), while in the metal-poor regime ([Fe/H] <= -2.2) they seem to be on average similar to 0.1 dex more alpha enhanced. This is the first time that the depletion in alpha elements for solar iron abundances is detected on the basis of a large, homogeneous, and coeval sample of old stellar tracers. Interestingly, we also detected a close similarity in the [alpha/Fe] trend between alpha-poor, metal-rich RRLs and red giants (RGs) in the Sagittarius dwarf galaxy as well as between alpha-enhanced, metal-poor RRLs and RGs in ultrafaint dwarf galaxies. These results are supported by similar elemental abundances for 46 field horizontal branch stars. These stars share with RRLs the same evolutionary phase and the same progenitors. This evidence further supports the key role that old stellar tracers play in constraining the early chemical enrichment of the halo and, in particular, in investigating the impact that dwarf galaxies have had in the mass assembly of the Galaxy.
- ItemThe Aquarius comoving group is not a disrupted classical globular cluster(2014) Casey, A. R.; Keller, S. C.; Alves-Brito, A.; Frebel, A.; Da Costa, G.; Karakas, A.; Yong, D.; Schlaufman, K. C.; Jacobson, H. R.; Yu, Q.; Fishlock, C.We present a detailed analysis of high-resolution, high signal-to-noise ratio spectra for five Aquarius stream stars observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. Our sample represents one-third of the 15 known members in the stream. We find the stream is not monometallic: the metallicity ranges from [Fe/H] = -0.63 to -1.58. No anticorrelation in Na-O abundances is present, and we find a strong positive Mg-Al relationship, similar to that observed in the thick disc. We find no evidence that the stream is a result of a disrupted classical globular cluster, contrary to a previously published claim. High [(Na, Ni, alpha)/Fe] and low [Ba/Y] abundance ratios in the stream suggest that it is not a tidal tail from a disrupted dwarf galaxy, either. The stream is chemically indistinguishable from Milky Way field stars with the exception of one candidate, C222531-145437. From its position, velocity, and detailed chemical abundances, C222531-145437 is likely a star that was tidally disrupted from omega-Centauri. We propose that the Aquarius stream is Galactic in origin, and could be the result of a disc-satellite perturbation in the Milky Way thick disc of the order of a few Gyr ago: derived orbits, UVW velocities, and angular momenta of the Aquarius members offer qualitative support for our hypothesis. Assuming that C222531-145437 is a tidally disrupted member of omega-Centauri, this system is the most likely disc perturber. In the absence of compelling chemical and/or dynamical evidence that the Aquarius stream is the tidal tail of a disrupted satellite, we advocate the 'Aquarius group' as a more appropriate description. Like the Canis Major overdensity, as well as the Hercules and Monoceros groups, the Aquarius group joins the list of kinematically identified substructures that are not actually accreted material: they are simply part of the rich complexity of the Milky Way structure.