• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alvares D."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A tractable Bayesian joint model for longitudinal and survival data
    (John Wiley and Sons Ltd, 2021) Alvares D.; Rubio F.J.
    © 2021 John Wiley & Sons Ltd.We introduce a numerically tractable formulation of Bayesian joint models for longitudinal and survival data. The longitudinal process is modeled using generalized linear mixed models, while the survival process is modeled using a parametric general hazard structure. The two processes are linked by sharing fixed and random effects, separating the effects that play a role at the time scale from those that affect the hazard scale. This strategy allows for the inclusion of nonlinear and time-dependent effects while avoiding the need for numerical integration, which facilitates the implementation of the proposed joint model. We explore the use of flexible parametric distributions for modeling the baseline hazard function which can capture the basic shapes of interest in practice. We discuss prior elicitation based on the interpretation of the parameters. We present an extensive simulation study, where we analyze the inferential properties of the proposed models, and illustrate the trade-off between flexibility, sample size, and censoring. We also apply our proposal to two real data applications in order to demonstrate the adaptability of our formulation both in univariate time-to-event data and in a competing risks framework. The methodology is implemented in rstan.
  • Loading...
    Thumbnail Image
    Item
    Bayesian survival analysis with BUGS
    (John Wiley and Sons Ltd, 2021) Alvares D.; Lázaro E.; Gómez-Rubio V.; Armero C.
    © 2021 John Wiley & Sons Ltd.Survival analysis is one of the most important fields of statistics in medicine and biological sciences. In addition, the computational advances in the last decades have favored the use of Bayesian methods in this context, providing a flexible and powerful alternative to the traditional frequentist approach. The objective of this article is to summarize some of the most popular Bayesian survival models, such as accelerated failure time, proportional hazards, mixture cure, competing risks, multi-state, frailty, and joint models of longitudinal and survival data. Moreover, an implementation of each presented model is provided using a BUGS syntax that can be run with JAGS from the R programming language. Reference to other Bayesian R-packages is also discussed.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback