Browsing by Author "Altimiras, Francisco"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem(2021) Garcia, Jose; Lemus-Romani, Jose; Altimiras, Francisco; Crawford, Broderick; Soto, Ricardo; Becerra-Rozas, Marcelo; Moraga, Paola; Paz Becerra, Alex; Pena Fritz, Alvaro; Rubio, Jose-Miguel; Astorga, GinoOptimization techniques, specially metaheuristics, are constantly refined in order to decrease execution times, increase the quality of solutions, and address larger target cases. Hybridizing techniques are one of these strategies that are particularly noteworthy due to the breadth of applications. In this article, a hybrid algorithm is proposed that integrates the k-means algorithm to generate a binary version of the cuckoo search technique, and this is strengthened by a local search operator. The binary cuckoo search algorithm is applied to the NP-hard Set-Union Knapsack Problem. This problem has recently attracted great attention from the operational research community due to the breadth of its applications and the difficulty it presents in solving medium and large instances. Numerical experiments were conducted to gain insight into the contribution of the final results of the k-means technique and the local search operator. Furthermore, a comparison to state-of-the-art algorithms is made. The results demonstrate that the hybrid algorithm consistently produces superior results in the majority of the analyzed medium instances, and its performance is competitive, but degrades in large instances.
- ItemAltered Gut Microbiota in a Fragile X Syndrome Mouse Model(2021) Altimiras, Francisco; Garcia, Jose Antonio; Palacios-Garcia, Ismael; Hurley, Michael J.; Deacon, Robert; Gonzalez, Bernardo; Cogram, PatriciaThe human gut microbiome is the ecosystem of microorganisms that live in the human digestive system. Several studies have related gut microbiome variants to metabolic, immune and nervous system disorders. Fragile X syndrome (FXS) is a neurodevelopmental disorder considered the most common cause of inherited intellectual disability and the leading monogenetic cause of autism. The role of the gut microbiome in FXS remains largely unexplored. Here, we report the results of a gut microbiome analysis using a FXS mouse model and 16S ribosomal RNA gene sequencing. We identified alterations in the fmr1 KO2 gut microbiome associated with different bacterial species, including those in the genera Akkermansia, Sutterella, Allobaculum, Bifidobacterium, Odoribacter, Turicibacter, Flexispira, Bacteroides, and Oscillospira. Several gut bacterial metabolic pathways were significantly altered in fmr1 KO2 mice, including menaquinone degradation, catechol degradation, vitamin B6 biosynthesis, fatty acid biosynthesis, and nucleotide metabolism. Several of these metabolic pathways, including catechol degradation, nucleotide metabolism and fatty acid biosynthesis, were previously reported to be altered in children and adults with autism. The present study reports a potential association of the gut microbiome with FXS, thereby opening new possibilities for exploring reliable treatments and non-invasive biomarkers.