Browsing by Author "Altieri, B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemEnhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations(2012) Santini, P.; Rosario, D. J.; Shao, L.; Lutz, D.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floc'h, E.; Magnelli, B.; Mainieri, V.; Nordon, R.; Garcia, A. M. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We compare the average star formation (SF) activity in X-ray selected AGN hosts with a mass-matched control sample of inactive galaxies, including both star forming and quiescent sources, in the 0.5 < z < 2.5 redshift range. Recent observations carried out by PACS, the 60-210 mu m photometric camera on board the Herschel Space Observatory, in GOODS-S, GOODS-N and COSMOS allow us to obtain an unbiased estimate of the far-IR luminosity, and hence of the SF properties, of the two samples. Accurate AGN host stellar mass estimates are obtained by decomposing their total emission into the stellar and the nuclear components. We report evidence of a higher average SF activity in AGN hosts with respect to the control sample of inactive galaxies. The level of SF enhancement is modest (similar to 0.26 dex at similar to 3 sigma confidence level) at low X-ray luminosities (L-X less than or similar to 10(43.5) erg s(-1)) and more pronounced (0.56 dex at >10 sigma confidence level) in the hosts of luminous AGNs. However, when comparing to star forming galaxies only, AGN hosts are found broadly consistent with the locus of their "main sequence". We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGN accretion not tightly linked to the current total SF in the host galaxy, while the luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and star formation, possibly through major mergers. While an increased SF activity with respect to inactive galaxies of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-L-X AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections between instantaneous SF and accretion that can be induced by smaller scale (non-major merger) mechanisms. Far-IR luminosity distributions favour the latter scenario.
- ItemGOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies since z ∼ 3(2012) Mullaney, J. R.; Pannella, M.; Daddi, E.; Alexander, D. M.; Elbaz, D.; Hickox, R. C.; Bournaud, F.; Altieri, B.; Aussel, H.; Coia, D.; Dannerbauer, H.; Dasyra, K.; Dickinson, M.; Hwang, H. S.; Kartaltepe, J.; Leiton, R.; Magdis, G.; Magnelli, B.; Popesso, P.; Valtchanov, I.; Bauer, F. E.; Brandt, W. N.; Del Moro, A.; Hanish, D. J.; Ivison, R. J.; Juneau, S.; Luo, B.; Lutz, D.; Sargent, M. T.; Scott, D.; Xue, Y. Q.We present a study of the infrared properties of X-ray selected, moderate-luminosity (i.e. L-X = 10(42)-10(44) erg s(-1)) active galactic nuclei (AGNs) up to z approximate to 3, in order to explore the links between star formation in galaxies and accretion on to their central black holes. We use 100 and 160 mu m fluxes from GOODS-Herschel - the deepest survey yet undertaken by the Herschel telescope - and show that in the vast majority of cases (i.e. > 94 per cent) these fluxes are dominated by emission from the host galaxy. As such, these far-infrared bands provide an uncontaminated view of star formation in the AGN host galaxies. We find no evidence of any correlation between the X-ray and infrared luminosities of moderate AGNs at any redshift, suggesting that global star formation is decoupled from nuclear (i.e. AGN) activity in these galaxies. On the other hand, we confirm that the star formation rates of AGN hosts increase strongly with redshift, by a factor of 43(-18)(+27) from z < 0.1 to z = 2-3 for AGNs with the same range of X-ray luminosities. This increase is entirely consistent with the factor of 25-50 increase in the specific star formation rates (SSFRs) of normal, star-forming (i.e. main-sequence) galaxies over the same redshift range. Indeed, the average SSFRs of AGN hosts are only marginally (i.e. approximate to 20 per cent) lower than those of main-sequence galaxies at all surveyed redshifts, with this small deficit being due to a fraction of AGNs residing in quiescent (i.e. low SSFR) galaxies. We estimate that 79 +/- 10 per cent of moderate-luminosity AGNs are hosted in main-sequence galaxies, 15 +/- 7 per cent in quiescent galaxies and < 10 per cent in strongly starbursting galaxies. We derive the fractions of all main-sequence galaxies at z < 2 that are experiencing a period of moderate nuclear activity, noting that it is strongly dependent on galaxy stellar mass (M-stars), rising from just a few per cent at M-stars similar to 10(10) M-circle dot to greater than or similar to 20 per cent at M-stars >= 10(11) M-circle dot. Our results indicate that it is galaxy stellar mass that is most important in dictating whether a galaxy hosts a moderate-luminosity AGN. We argue that the majority of moderate nuclear activity is fuelled by internal mechanisms rather than violent mergers, which suggests that high-redshift disc instabilities could be an important AGN feeding mechanism.
- ItemHerschel FIR counterparts of selected Lyα emitters at z ∼ 2.2 Fast evolution since z ∼ 3 or missed obscured AGNs?(2010) Bongiovanni, A.; Oteo, I.; Cepa, J.; Perez Garcia, A. M.; Sanchez-Portal, M.; Ederoclite, A.; Aguerri, J. A. L.; Alfaro, E. J.; Altieri, B.; Andreani, P.; Aparicio-Villegas, M. T.; Aussel, H.; Benitez, N.; Berta, S.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cava, A.; Cervino, M.; Chulani, H.; Cimatti, A.; Cristobal-Hornillos, D.; Daddi, E.; Dominguez, H.; Elbaz, D.; Fernandez-Soto, A.; Schreiber, N. Foerster; Genzel, R.; Gomez, M. F.; Gonzalez Delgado, R. M.; Grazian, A.; Gruppioni, C.; Herreros, J. M.; Iglesias Groth, S.; Infante, L.; Lutz, D.; Magnelli, B.; Magdis, G.; Maiolino, R.; Marquez, I.; Martinez, V. J.; Masegosa, J.; Moles, M.; Molino, A.; Nordon, R.; del Olmo, A.; Perea, J.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Prada, F.; Quintana, J. M.; Riguccini, L.; Rodighiero, G.; Saintonge, A.; Sanchez, S. F.; Santini, P.; Shao, L.; Sturm, E.; Tacconi, L.; Valtchanov, I.Ly alpha emitters (LAEs) are seen everywhere in the redshift domain from local to z similar to 7. Far-infrared (FIR) counterparts of LAEs at different epochs could provide direct clues on dust content, extinction, and spectral energy distribution (SED) for these galaxies. We search for FIR counterparts of LAEs that are optically detected in the GOODS-North field at redshift z similar to 2.2 using data from the Herschel Space Telescope with the Photodetector Array Camera and Spectrometer (PACS). The LAE candidates were isolated via color-magnitude diagram using the medium-band photometry from the ALHAMBRA Survey, ancillary data on GOODS-North, and stellar population models. According to the fitting of these spectral synthesis models and FIR/optical diagnostics, most of them seem to be obscured galaxies whose spectra are AGN-dominated. From the analysis of the optical data, we have observed a fraction of AGN or composite over source total number of similar to 0.75 in the LAE population at z similar to 2.2, which is marginally consistent with the fraction previously observed at z = 2.25 and even at low redshift (0.2 < z < 0.45), but significantly different from the one observed at redshift similar to 3, which could be compatible either with a scenario of rapid change in the AGN fraction between the epochs involved or with a non detection of obscured AGN in other z = 2-3 LAE samples due to lack of deep FIR observations. We found three robust FIR (PACS) counterparts at z similar to 2.2 in GOODS-North. This demonstrates the possibility of finding dust emission in LAEs even at higher redshifts.
- ItemThe mean star formation rate of X-ray selected active galaxies and its evolution from z ∼ 2.5: results from PEP-Herschel(2012) Rosario, D. J.; Santini, P.; Lutz, D.; Shao, L.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Cox, T. J.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floch, E.; Magnelli, B.; Mainieri, V.; Netzer, H.; Nordon, R.; Garcia, I. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We study relationships between star-formation rate (SFR) and the accretion luminosity and nuclear obscuration of X-ray selected active galactic nuclei (AGNs) using a combination of deep far-infrared (FIR) and X-ray data in three key extragalactic survey fields (GOODS-South, GOODS-North and COSMOS), as part of the PACS Evolutionary Probe (PEP) program. The use of three fields with differing areas and depths enables us to explore trends between the global FIR luminosity of the AGN hosts and the luminosity of the active nucleus across 4.5 orders of magnitude in AGN luminosity (L-AGN) and spanning redshifts from the Local Universe to z = 2.5. Using imaging from the Herschel/PACS instrument in 2-3 bands, we combine FIR detections and stacks of undetected objects to arrive at mean fluxes for subsamples in bins of redshift and X-ray luminosity. We constrain the importance of AGN-heated dust emission in the FIR and confirm that the majority of the FIR emission of AGNs is produced by cold dust heated by star-formation in their host galaxies.