• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aguirre Aparicio, Paula"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative qualitative and quantitative analyses of the seismic performance of water networks during the Maule 2010, Christchurch 2010-2011, and Tohoku 2011 earthquakes
    (ASCE-AMER SOC CIVIL ENGINEERS, 2022) Alberto, Yolanda; Llera Martin, Juan Carlos de la; Aguirre Aparicio, Paula; Monsalve M., Mauricio; Molinos Senante, María
    Recovery of damaged water supply systems after severe earthquakes is one of the priorities to return to normal conditions. Water supply systems are intrinsically interdependent with other important lifelines such as transportation, energy, health care, and industrial sectors. These interdependencies need to be better understood by means of empirical data and analytical models. This paper is primarily of archival nature and describes empirical impact data of large earthquakes in Chile (Maule 2010), New Zealand (Christchurch 2010-2011), and Japan (Tohoku 2011) on their respective drinking water systems, and summarizes damage observations, emergency actions, and restoration processes within a resilience framework focused on metrics of robustness and rapidity. The archival nature of this article is justified by the paramount importance of systematic data collection to improve network resilience for future analytical models that aim to predict the response and recovery of water networks. Moreover, based on the collected data, the effectiveness of response actions and implemented countermeasures are evaluated relative to the observed earthquake performance of the system components. Important observations are derived to understand the main factors causing water supply system outages, the effectiveness of strategies used, and their capacity to restore the service.
  • Loading...
    Thumbnail Image
    Item
    Rupture parameter sensitivity of low frequency ground motion response spectra using synthetic scenarios in North Chile
    (SPRINGER, 2021) Fortuño Jara, Catalina Pía; Llera Martin, Juan Carlos de la; Gonzalez, Gabriel; Gonzalez, Juan; Aguirre Aparicio, Paula
    This research performs a sensitivity analysis of response spectrum values for various physical earthquake parameters, which are used to generate synthetic seismograms consistent with the expected seismicity in north Chile. Sensitivity analyses are based on the earthquake scenario and slip distribution model of the 2014, M-w 8.1 Pisagua earthquake, and seven other physically plausible interplate events for north Chile. A finite-fault rupture model, and slip distribution of the Pisagua earthquake, were obtained using inversion of InSAR and GPS data. Three other rupture models based on previous studies of interplate locking for north Chile and capable of generating M-w 8.3-8.6 earthquakes with an estimated maximum slip of 9.2 m, were incorporated in the analyses. Also, four additional scenarios with moment magnitudes in the range M-w 8.6-8.9 were generated by concatenating these physical scenarios into larger rupture areas within the north segment. Using these scenarios, synthetic ground motions were built at four observation sites: Pisagua, Iquique, Tocopilla, and Calama. Response sensitivity was studied for three key rupture parameters: mean rupture velocity, slip rise-time, and rupture directivity. Responses selected were peak ground displacement (PGD), spectral pseudo-velocities, S-v, and spectral displacements, S-d. First and second order variations of PGD, S-v, and S-d relative to the source parameters were computed and used together with a Taylor series expansion to propagate uncertainty into the responses as a function of v(r) and rise-time t(r). To study the effect of rupture directivity, three different foci locations were considered for each scenario: north, south, and at the centroid of the slip model. Response PGD values show no clear trends with rupture velocity, v(r); however, the variability increases as the system period increases. The effect of the slip rise-time is significant, and as t(r) increases, the spectral responses tend to decrease, suggesting that shorter slip rise-times lead to higher seismic demands in long period structures. The results obtained for the directivity analysis suggest that two factors control the expected waveforms and spectral responses: first, the direction of the rupture relative to the location of each site, and the hypocentral distance.
  • Loading...
    Thumbnail Image
    Item
    Sensitivity of synthetic seismograms for different seismic scenarios in north Chile
    (National Information Centre of Earthquake Engineering, 2017) Fortuño Jara, Catalina Pía; Llera Martin, Juan Carlos de la; González López, Gabriel; González, Juan; Aguirre Aparicio, Paula
    This research studies the sensitivity of spectral response values to various physical earthquake scenario parameters, the latter used to generate synthetic low frequency seismograms in North Chile. Ten earthquake scenarios have been defined using seed information from the slip model of the 2010, Maule earthquake, and different physically plausible interplate locking models in the region. Firstly, the Maule 2010 finite fault rupture model was resituated in the existing seismic gap in north Chile using a curved geometry according to the Slab 1.0 model. From this seed model, one synthetic scenario with constant moment magnitude Mw 8.8 was generated with the same slip distribution as the original 2010 slip model. Three other models with variations in the slip distribution were considered. In addition, three physically plausible fault rupture models based on previous studies of interplate locking were used. Each of these scenarios was capable of generating Mw 8.2 – 8.4 earthquakes with a maximum slip of 7.5 m, approximately. Patches of major slip were located along the coast line approximately in front of the cities of Arica, Iquique, and Tocopilla, respectively. Also, three additional scenarios with moment magnitudes in the range Mw 8.5 – 8.7 were built by connecting these physical scenarios into larger rupture areas. These combined interplate locking models represented the activation of two or more asperities, similar to the experience of the 2010 Maule earthquake. Using these scenarios we built low frequency synthetic seismograms at four control sites: Arica, Iquique, Tocopilla, and Calama. The sensitivity of these results was studied by deterministic analyses on some key rupture parameters, such as mean rupture velocity and slip rise-time. Sensitivity analysis used peak ground displacement (PGD) and acceleration (PGA), pseudo-acceleration spectra, Sa, and displacement spectra, Sd. The range of values considered for mean rupture velocity was vr = 2.2-3.0 km/s. Four points were considered in the vicinity of each specified velocity to compute sensitivities. First and second order derivatives of PGD, PGA, Sd, and Sa relative to the source parameters were then used to build a Taylor series expansion to predict PGD, Sa and Sd as a function of vr. This allows to consider uncertainty in this parameter and propagate such uncertainty into spectral response values. An analogous procedure was considered for rise-time tr in the range from 2 to 10s.
  • Loading...
    Thumbnail Image
    Item
    Strong ground motion simulation of the 2015 Illapel earthquake using corrected empirical Green’s functions
    (National Information Centre of Earthquake Engineering, 2017) Fernández Soto, Claudio; Aguirre Aparicio, Paula; Llera Martin, Juan Carlos de la; Candia, Gabriel A.; Nozu, A.
    The September 16th 2015 Illapel, Chile, earthquake (Mw 8.4) generated a good set of aftershock data that enabled us to develop and to validate a model for synthetic ground motion generation. This study presents a methodology to generate strong ground motions based on site amplification and phase characteristics of seismic waves, and also based on a source model that was newly developed for the earthquake. The methodology includes the superposition of corrected empirical Green’s functions that consider the three effects: source, path and site. The path effects incorporate the attenuation of seismic waves between the source and the recording stations, and include both geometric spreading and inelastic attenuation. Weak motion data obtained at the strong-motion stations was used to evaluate empirical site amplification factors. For this purpose, aftershocks recorded during the first three months after the main shock were used. Furthermore, the phase characteristics of the Green’s functions were determined based on the weak motion data recorded at the stations. The source model involves two SPGAs (strong-motion pulse generation areas). The locations of the SPGAs were basically determined based on the arrival times of the velocity pulses. The SPGA sizes were chosen according to the pulse duration. The methodology was validated using observed records in terms of velocity waveforms and Fourier spectra. According to the results, the velocity waveforms including pulses were well reproduced in a frequency range of interest to structural engineering (0.2 to 1 Hz). The agreement between the simulated and measured waveforms makes this model a strong platform to assess hazard at specific sites where detailed hazard assessment is required.
  • Loading...
    Thumbnail Image
    Item
    The Atacama cosmology telescope: cosmological parameters from the 2008 power spectrum
    (2011) Dunkley, J.; Aguirre Aparicio, Paula; Barrientos, Luis Felipe; Dünner Planella, Rolando
  • Loading...
    Thumbnail Image
    Item
    The Atacama cosmology telescope: cosmology from galaxy clusters detected via the sunyaev-zel'dovich effect
    (2011) Sehgal, N.; Aguirre Aparicio, Paula; Barrientos, Luis Felipe; Dünner Planella, Rolando
  • Loading...
    Thumbnail Image
    Item
    The Atacama cosmology telescope: high-resolution sunyaev-zel'dovich array observations of act sze-selected clusters from the equatorial strip
    (2012) Reese, E.; Aguirre Aparicio, Paula; Dünner Planella, Rolando; Rojas Aracena Felipe Alberto

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback