• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aboitiz Domínguez, Francisco Javier"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Multimodal Interface for Speech Perception: the role of the Left Superior Temporal Sulcus in Social Cognition and Autism
    (2024) Kausel, Leonie; Michon, Maëva; Soto Icaza, Patricia; Aboitiz Domínguez, Francisco Javier
    Multimodal integration is crucial for human interaction, in particular for social communication, which relies on integrating information from various sensory modalities. Recently a third visual pathway specialized in social perception was proposed, which includes the right superior temporal sulcus (STS) playing a key role in processing socially relevant cues and high-level social perception. Importantly, it has also recently been proposed that the left STS contributes to audiovisual integration of speech processing. In this article, we propose that brain areas along the right STS that support multimodal integration for social perception and cognition can be considered homologs to those in the left, language-dominant hemisphere, sustaining multimodal integration of speech and semantic concepts fundamental for social communication. Emphasizing the significance of the left STS in multimodal integration and associated processes such as multimodal attention to socially relevant stimuli, we underscore its potential relevance in comprehending neurodevelopmental conditions characterized by challenges in social communication such as autism spectrum disorder (ASD). Further research into this left lateral processing stream holds the promise of enhancing our understanding of social communication in both typical development and ASD, which may lead to more effective interventions that could improve the quality of life for individuals with atypical neurodevelopment.
  • Loading...
    Thumbnail Image
    Item
    From Multimodal Sensorimotor Integration to Semantic Networks: A Phylogenetic Perspective on Speech and Language Evolution
    (2025) Michon, Maëva; Aboitiz Domínguez, Francisco Javier
  • Loading...
    Thumbnail Image
    Item
    Neural Mechanisms of Human Perceptual Learning: Electrophysiological Evidence for a Two-Stage Process
    (2011) Hamamé, Carlos M.; Cosmelli Sánchez, Diego José; Henriquez, Rodrigo; Aboitiz Domínguez, Francisco Javier
    Background: Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed.", "Methodology/Principal Findings: We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.", "Conclusions/Significance: We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.
  • No Thumbnail Available
    Item
    Shifting visual attention away from fixation is specifically associated with alpha band activity over ipsilateral parietal regions
    (2010) Cosmelli Sánchez, Diego José; López Hernández, Vladimir; Lachaux, Jean Philippe; López Calderón, Javier Ignacio; Renault, Bernard; Martinerie, Jacques; Aboitiz Domínguez, Francisco Javier
    We studied brain activity during the displacement of attention in a modified visuo-spatial orienting paradigm. Using a behaviorally relevant no-shift condition as a control, we asked whether ipsi- or contralateral parietal alpha band activity is specifically related to covert shifts of attention. Cue-related event-related potentials revealed an attention directing anterior negativity (ADAN) contralateral to the shift of attention and P3 and contingent negative variation waveforms that were enhanced in both shift conditions as compared to the no-shift task. When attention was shifted away from fixation, alpha band activity over parietal regions ipsilateral to the attended hemifield was enhanced relative to the control condition, albeit with different dynamics in the upper and lower alpha subbands. Contralateral-to-attended parietal alpha band activity was indistinguishable from the no-shift task.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback