Browsing by Author "Abades, Sebastian"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemAssessing Ecological Indicators for Remnant Vegetation Strips as Functional Biological Corridors in Chilean Vineyards(2021) Diaz-Forestier, Javiera; Abades, Sebastian; Pohl, Nelida; Barbosa, Olga; Godoy, Karina; Svensson, Gabriella L.; Undurraga, Maria, I; Bravo, Camila; Garcia, Camila; Root-Bernstein, Meredith; Armesto, Juan J.; Celis-Diez, Juan L.Mediterranean central Chile is globally recognized as a hotspot for terrestrial biodiversity due to its high endemism and massive habitat loss. However, within the rural landscape of central Chile, significant extents of natural areas remain, especially on less productive, steep slopes, and vegetation strips extending from the surrounding hills to agricultural areas. Accordingly, vegetation strips or corridors, within lowland farms, constitute key elements to support the conservation of biodiversity in rural landscapes. To assess the ecological performance of corridors in 22 commercials vineyards in central Chile, we characterized them in terms of width-, length-, area-, and perimeter-to-area ratios, as well as the number of connections with natural areas. Based on a set of previously defined ecological indicators (species, functional groups, and structural components), we compared their occurrence in corridors within vineyards and in the surrounding natural areas. We evaluated the effects of corridor attributes on the occurrence of the selected ecological indicators, using a generalized linear mixed model with each vineyard as a random factor. The area, width, and length of vegetation corridors varied widely (1.2-86.3 ha, 10.5-95 m, and 380-5000 m, respectively). We found significant differences in the occurrence of indicators between corridors and natural areas. All sampled ecological indicators in corridors showed a negative relationship with the distance to the nearest natural area. Vegetation strips within vineyards represent important opportunities for biodiversity conservation that significantly enhance habitat quality in the agricultural landscape for biodiversity and habitat connectivity.
- ItemImmunocompetence of breeding females is sensitive to cortisol levels but not to communal rearing in the degu (Octodon degus)(2015) Ebensperger, Luis A.; Leon, Cecilia; Ramirez-Estrada, Juan; Abades, Sebastian; Hayes, Loren D.; Nova, Esteban; Salazar, Fabian; Bhattacharjee, Joydeep; Ines Becker, MariaOne hypothesis largely examined in social insects is that cooperation in the context of breeding benefits individuals through decreasing the burden of immunocompetence and provide passive immunity through social contact. Similarly, communal rearing in social mammals may benefit adult female members of social groups by reducing the cost of immunocompetence, and through the transfer of immunological compounds during allonursing. Yet, these benefits may come at a cost to breeders in terms of a need to increase investment in individual immunocompetence. We examined how these potential immunocompetence costs and benefits relate to reproductive success and survival in a natural population of the communally rearing rodent, Octodon degus. We related immunocompetence (based on ratios of white blood cell counts, total and specific immunoglobulins of G isotype titers) and fecal glucocorticoid metabolite (FGC) levels of adults immunized with hemocyanin from the mollusk Concholepas concholepas to measures of sociality (group size) and communal rearing (number of breeding females). Offspring immunocompetence was quantified based on circulating levels of the same immune parameters. Neither female nor offspring immunocompetence was influenced by communal rearing or sociality. These findings did not support that communal rearing and sociality enhance the ability of females to respond to immunological challenges during lactation, or contribute to enhance offspring condition (based on immunocompetence) or early survival (i.e., to 3 months of age). Instead, levels of humoral and cellular components of immunocompetence were associated with variation in glucorcorticoid levels of females. We hypothesize that this covariation is driven by physiological (life-history) adjustments needed to sustain breeding. (C) 2014 Elsevier Inc. All rights reserved.
- ItemOne for all and all for one: phenotype assortment and reproductive success in masculinized females(2021) Correa, Loreto A.; Leon, Cecilia; Ramirez-Estrada, Juan; Ly-Prieto, Alvaro; Abades, Sebastian; Hayes, Loren D.; Soto-Gamboa, Mauricio; Ebensperger, Luis A.Homophily by morphological and behavioral traits has been described in several species of vertebrates, but its functional consequences remain poorly studied. Homophily by plurally breeding females may improve direct fitness by enhancing reproductive success. Female mammals may exhibit phenotypical masculinization due to exposure to androgens during early development, a condition that is associated with maternal performance during subsequent breeding. Our goal was to assess whether female composition (in terms of masculinization) of plurally breeding groups influences female fitness in a natural population of degus (Octodon degus). We assessed if plurally breeding female degus assort themselves by anogenital distance (AGD), an accurate measure of masculinization level. We also quantified if homophily by AGD phenotype affects female reproductive success and the reproductive output of the group. Plurally breeding groups typically included similarly masculinized (i.e., long AGD) females or similarly feminized (short AGD) females, indicating a strong degree of homophily. Females weaned more offspring in plurally breeding groups with more masculinized females. Additionally, standardized variance in the number of offspring weaned decreased in plurally breeding groups with mostly masculinized females, indicating greater reproductive equality in these groups. We conclude that female degus organize into homophilic social groups of similar AGD, and that social groups of masculinized females exhibit a higher reproductive success.
- ItemSociality of Octodontomys gliroides and other octodontid rodents reflects the influence of phylogeny(2014) River, Daniela S.; Abades, Sebastian; Alfaro, Fernando D.; Ebensperger, Luis A.Multiple ecological factors are known to drive variation in social behavior. However, group-living in some species appears to be highly conserved, suggesting a phylogenetic influence. In this study, we evaluated both scenarios using intraspecific and interspecific comparisons across octodontid rodents. We first examined 2 different populations of Andean degu (Octodontomys gliroides), representing 2 extremes of a climate vegetation gradient across the Andes range. We evaluated how ecological variation in terms of abundance and distribution of food resources, predation risk, and burrowing costs predicted interpopulation variation in group size and range-area overlap (2 proxies of sociality). We estimated these measures of sociality from livetrapping and radiotelemetry. We then used phylogenetic methods to determine whether sociality exhibits a phylogenetic signal and reconstructed the ancestral state of sociality across the family Octodontidae. Overall activity of females and males of O. gliroides was greater during nighttime than daytime. Across populations we found significant differences in ecology, including abundance and distribution of food, predation risk, and burrowing costs. However, populations were similar in terms of group size and range-area overlap. The phylogenetic approach revealed a strong and significant phylogenetic signal associated with sociality, where this behavior was present early during the evolution of octodontid rodents. Together, these findings imply that sociality of O. gliroides is not linked to current population differences in ecology.
- ItemSocially unstable conditions experienced during development prime female Octodon degus to shape the phenotype of their own offspring(2021) Ebensperger, Luis A.; Gomez, Celeste; Aspillaga-Cid, Antonia; Leon, Cecilia; Ramirez-Estrada, Juan; Correa, Loreto A.; Vera, Daniela C.; Abades, Sebastian; Hayes, Loren D.Because residents and immigrants from group living species may experience fitness costs associated with permanent changes in group membership, we examined the hypothesis that females experiencing socially unstable or socially stable conditions during development compensate these costs by shaping the phenotype of their own offspring differently. Groups of adult females experiencing either socially stable or unstable conditions in the early social environment were assigned to either socially stable or unstable conditions in the social environment as adults. We quantified affiliative and agonistic interactions among the females during pregnancy and lactation of the focal female, maternal and allomaternal care, hypothalamic-anterior pituitary-adrenal axis (HPA) acute stress response, and early offspring growth. Social instability during breeding enhanced agonistic interactions among adult females, and offspring that experienced socially unstable conditions exhibited enhanced offspring care, regardless of adult environments. Neither social behavior, offspring care, acute stress physiology, nor early growth was influenced by early or adult social stability conditions. These findings imply that socially unstable conditions prime developing females to shape the phenotype of their offspring to prevent negative effects of socially unstable environments.
- ItemSocioecological conditions predict degu social instability and provide limited cues to forecast subsequent breeding conditions(2021) Ebensperger Pesce, Luis Alberto; Abades, Sebastian; Riquelme De la Fuente, Juan Daniel; Correa, Loreto A.; Hayes, Loren D.
- ItemSoil bacterial community structure of fog-dependent Tillandsia landbeckii dunes in the Atacama Desert(Springer, 2021) Alfaro, Fernando D.; Manzano, Marlene; Almiray, Cristian; García B., Juan Luis; Osses, Pablo; Río López, Camilo del; Vargas Vásquez, Constanza Giovanna; Latorre H., Claudio; Koch, Marcus A.; Siegmund, Alexander; Abades, SebastianThe interplay between plants and soil drives the structure and function of soil microbial communities. In water-limited environments where vascular plants are often absent and only specialized groups of rootless plants grow, this interaction could be mainly asymmetric, with plants supporting nutrients and resources via litter deposition. In this study, we use observational approaches to evaluate the impact of local distribution of Tillandsia landbeckii across elevation on soil bacterial community structure and composition in the Atacama Fog Desert. Tillandsia landbeckii is a plant without functional roots that develops on meter-scale sand dunes and depends mainly on marine fog that transports resources (water and nutrients) from the Pacific Ocean. Our data show that soil bacterial abundance, richness, and diversity were significantly higher beneath T. landbeckii plants relative to bare soils. However, these differences were not significant across T. landbeckii located at different elevations and with different input of marine fog. On the other hand, bacterial community composition was significantly different with T. landbeckii plants across elevations. Further, samples beneath T. landbeckii and bare soils showed significant differences in bacterial community composition. Around 99% of all operational taxonomic units (OTUs) were recorded exclusively beneath T. landbeckii, and only 1% of OTUs were observed in bare soils. These findings suggest that the presence of T. landbeckii promotes significant increases in bacterial abundance and diversity compared with bare soils, although we fail to demonstrate that local-scale changes in elevation can affect patterns of soil bacterial diversity and abundance beneath T. landbeckii.
- ItemVegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants(2022) Parada-Pozo, Genesis; Bravo, Leon A.; Saez, Patricia L.; Cavieres, Lohengrin A.; Reyes-Diaz, Marjorie; Abades, Sebastian; Alfaro, Fernando D.; De la Iglesia, Rodrigo; Trefault, NicoleIn the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species-Deschampsia antarctica and Colobanthus quitensis-potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.
- ItemWild Floral Visitors Are More Important Than Honeybees as Pollinators of Avocado Crops(2023) Celis-Diez, Juan L. L.; Garcia, Camila B. B.; Armesto, Juan J. J.; Abades, Sebastian; Garratt, Michael P. D.; Fonturbel, Francisco E. E.Wild insects provide pollination services in agroecosystems. Avocado is an economically important crop grown in the Chilean Mediterranean climate region and exported worldwide. Avocado pollination is managed using honeybee hives, while the role of wild insects as pollinators remains poorly known. We quantified the relative contributions of wild floral visitors and honeybees to the fruit set of avocados in two contrasting seasons (2015 and 2016) in Central Chile. Observations were made in 60 trees grown nearby (similar to 300 m) to remnant patches of native sclerophyll vegetation. We found that honeybees and wild insects accounted for 48.6% and 51.4% of total floral visitation, respectively, with a 68% taxonomic similarity of floral visitors between seasons. The presence of honeybees significantly modulated the floral visitor composition and modified plant-pollination network parameters, which resulted in the biotic homogenization of the interaction network, through the increase of shared tree-floral visitor interactions, to the detriment of exclusive interactions. Finally, wild insects were more effective than honeybees in pollinating avocado trees and their contribution was greatest during the dry year. Thus, honeybees alone cannot be relied upon to deliver maximum pollination. We highlight ecological intensification practices to encourage wild insect visits and avoid native vegetation replacement with orchards. Therefore, we emphasize that future ecological intensification research should address agricultural practices to promote wild insects and evaluate the role of native vegetation as wild pollinator habitat in agricultural landscapes.