Browsing by Author "Shimizu, T. Taro"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns(2018) Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; T
- ItemSignificant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures(2020) Smith, Krista Lynne; Koss, Michael; Mushotzky, Richard; Wong, O. Ivy; Shimizu, T. Taro; Ricci, Claudio; Ricci, FedericaWe conducted 22 GHz 1 '' Jansky Very Large Array imaging of 100 radio-quiet X-ray-selected active galactic nuclei (AGN) from the Swift-Burst Array Telescope (Swift-BAT) survey. We find AGN-driven kiloparsec-scale radio structures inconsistent with pure star formation in 11 AGN. The host galaxies of these AGN lie significantly below the star-forming main sequence, indicating suppressed star formation. While these radio structures tend to be physically small compared to the host galaxy, the global star formation rate of the host is affected. We evaluate the energetics of the radio structures interpreted first as immature radio jets, and then as consequences of an AGN-driven radiative outflow, and compare them to two criteria for successful feedback: the ability to remove the CO-derived molecular gas mass from the galaxy gravitational potential and the kinetic energy transfer to molecular clouds leading to v(cloud) > sigma(*). In most cases, the jet interpretation is insufficient to provide the energy necessary to cause the star formation suppression. Conversely, the wind interpretation provides ample energy in all but one case. We conclude that it is more likely that the observed suppression of star formation in the global host galaxy is due to interstellar medium interactions of a radiative outflow, rather than a small-scale radio jet.
- ItemThe CO(3–2)/CO(1–0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS(2020) Lamperti, Isabella; Saintonge, Amélie; Koss, Michael; Viti, Serena; Wilson, Christine D.; He, Hao; Shimizu, T. Taro; Greve, Thomas R; Mushotzky, Richard; Treister, Ezequiel
- ItemUGC 4211: A Confirmed Dual Active Galactic Nucleus in the Local Universe at 230 pc Nuclear Separation(2023) Koss, Michael J.; Treister, Ezequiel; Kakkad, Darshan; Casey-Clyde, J. Andrew; Kawamuro, Taiki; Williams, Jonathan; Foord, Adi; Trakhtenbrot, Benny; Bauer, Franz E.; Privon, George C.; Ricci, Claudio; Mushotzky, Richard; Barcos-Munoz, Loreto; Blecha, Laura; Connor, Thomas; Harrison, Fiona; Liu, Tingting; Magno, Macon; Mingarelli, Chiara M. F.; Muller-Sanchez, Francisco; Oh, Kyuseok; Shimizu, T. Taro; Smith, Krista Lynne; Stern, Daniel; Tello, Miguel Parra; Urry, C. MeganWe present multiwavelength high-spatial resolution (similar to 0 ? 1, 70 pc) observations of UGC 4211 at z = 0.03474, a late-stage major galaxy merger at the closest nuclear separation yet found in near-IR imaging (0 " 32, similar to 230 pc projected separation). Using Hubble Space Telescope/Space Telescope Imaging Spectrograph, Very Large Telescope/MUSE+AO, Keck/OSIRIS+AO spectroscopy, and the Atacama Large Millimeter/submillimeter Array (ALMA) observations, we show that the spatial distribution, optical and near-infrared emission lines, and millimeter continuum emission are all consistent with both nuclei being powered by accreting supermassive black holes (SMBHs). Our data, combined with common black hole mass prescriptions, suggest that both SMBHs have similar masses, log (M-BH M-?) similar to 8.1 (south) and log (M-BH M-?) similar to 8.3 (north), respectively. The projected separation of 230 pc (similar to 6x the black hole sphere of influence) represents the closest-separation dual active galactic nuclei (AGN) studied to date with multiwavelength resolved spectroscopy and shows the potential of nuclear (< 50 pc) continuum observations with ALMA to discover hidden growing SMBH pairs. While the exact occurrence rate of close-separation dual AGN is not yet known, it may be surprisingly high, given that UGC 4211 was found within a small, volume-limited sample of nearby hard X-ray detected AGN. Observations of dual SMBH binaries in the subkiloparsec regime at the final stages of dynamical friction provide important constraints for future gravitational wave observatories.