• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lamy, Xavier"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Boundary regularity of weakly anchored harmonic maps
    (2015) Contreras, Andres; Lamy, Xavier; Rodiac, Remy
    In this note, we study the boundary regularity of the minimizers of a family of weak anchoring energies that model the states of liquid crystals. We establish optimal boundary regularity in all dimensions n >= 3. In dimension n = 3, this yields full regularity at the boundary, which stands in sharp contrast with the observation of boundary defects in physics works. We also show that, in the cases of weak and strong anchoring, the regularity of the minimizers is inherited from that of their corresponding limit problems. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
  • No Thumbnail Available
    Item
    On the Convergence of Minimizers of Singular Perturbation Functionals
    (2018) Contreras, Andres; Lamy, Xavier; Rodiac, Remy
    The study of singular perturbations of the Dirichlet energy is at the core of the phenomenological-description paradigm in soft condensed matter. Being able to pass to the limit plays a crucial role in the understanding of the geometric-driven profile of ground states. In this work, we study, under very general assumptions, the convergence of minimizers towards harmonic maps. We show that the convergence is locally uniform up to the boundary, away from the lower-dimensional singular set. Our results generalize related findings, most notably in the theory of liquid-crystals, to all dimensions n >= 3, and to general nonlinearities. Our proof follows a well-known scheme, relying on a small energy estimate and a monotonicity formula. It departs substantially from previous studies in the treatment of the small energy estimate at the boundary, since we do not rely on the specific form of the potential. In particular, this extends existing results in three-dimensional settings. In higher dimensions, we also deal with additional difficulties concerning the boundary monotonicity formula.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize