Browsing by Author "Hodge, Jacqueline"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemALMA spectroscopic Survey in the Hubble Ultra Deep Field : The Infrared Excess of UV-selected z=2-10 galaxies as a function of UV-continuum Slope and Stellar Mass(2016) Bouwens, Rychard J.; Aravena, Manuel; Decarli, Roberto; Walter, Fabian; Cunha, Elisabete da; Labbé, Ivo; Bauer, Franz Erik; Bertoldi, Frank; Carilli, Chris; Chapman, Scott; Daddi, Emanuele; Hodge, Jacqueline; Ivison, Rob J.; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Ota, Kazuaki; Riechers, Dominik; Smail, Ian R.; Werf, Paul van der; Weiss, Axel; Cox, Pierre; Elbaz, David; Gonzalez-Lopez, Jorge; Infante Lira, Leopoldo; Oesch, Pascal; Wagg, Jeff; Wilkins, Steve
- ItemKiloparsec-scale Imaging of the CO(1-0)-traced Cold Molecular Gas Reservoir in a z ∼ 3.4 Submillimeter Galaxy(2022) Castillo, Marta Frias; Rybak, Matus; Hodge, Jacqueline; van der Werf, Paul; Riechers, Dominik A.; Vieira, Daniel; Rivera, Gabriela Calistro; Martinez-Ramirez, Laura N.; Walter, Fabian; de Blok, Erwin; Narayanan, Desika; Wagg, JeffWe present a high-resolution study of the cold molecular gas as traced by CO(1-0) in the unlensed z similar to 3.4 submillimeter galaxy SMM J13120+4242, using multiconfiguration observations with the Karl G. Jansky Very Large Array (JVLA). The gas reservoir, imaged on 0 ''.39 (similar to 3 kpc) scales, is resolved into two components separated by similar to 11 kpc with a total extent of 16 +/- 3 kpc. Despite the large spatial extent of the reservoir, the observations show a CO(1-0) FWHM linewidth of only 267 +/- 64 km s(-1). We derive a revised line luminosity of LCO(1-0)' = (10 +/- 3) x 10(10) K km s(-1) pc(2) and a molecular gas mass of M-gas = (13 +/- 3)x 10(10) (alpha(CO)/1) M-circle dot. Despite the presence of a velocity gradient (consistent with previous resolved CO(6-5) imaging), the CO(1-0) imaging shows evidence for significant turbulent motions that are preventing the gas from fully settling into a disk. The system likely represents a merger in an advanced stage. Although the dynamical mass is highly uncertain, we use it to place an upper limit on the CO-to-H-2 mass conversion factor a alpha(CO) of 1.4. We revisit the SED fitting, finding that this galaxy lies on the very massive end of the main sequence at z = 3.4. Based on the low gas fraction, short gas depletion time, and evidence for a central AGN, we propose that SMM J13120 is in a rapid transitional phase between a merger-driven starburst and an unobscured quasar. The case of SMM J13120 highlights how mergers may drive important physical changes in galaxies without pushing them off the main sequence.
- ItemThe ALMA-CRISTAL Survey: Spatially Resolved Star Formation Activity and Dust Content in 4 < z < 6 Star-forming Galaxies(2024) Li, Juno; Da Cunha, Elisabete; Gonzalez-Lopez, Jorge; Aravena, Manuel; De Looze, Ilse; Schreiber, N. M. Foerster; Herrera-Camus, Rodrigo; Spilker, Justin; Tadaki, Ken-ichi; Barcos-Munoz, Loreto; Battisti, Andrew J.; Birkin, Jack E.; Bowler, Rebecca A. A.; Davies, Rebecca; Diaz-Santos, Tanio; Ferrara, Andrea; Fisher, Deanne B.; Hodge, Jacqueline; Ikeda, Ryota; Killi, Meghana; Lee, Lilian; Liu, Daizhong; Lutz, Dieter; Mitsuhashi, Ikki; Naab, Thorsten; Posses, Ana; Relano, Monica; Solimano, Manuel; Uebler, Hannah; van der Giessen, Stefan Anthony; Villanueva, VicenteUsing a combination of Hubble Space Telescope (HST), JWST, and Atacama Large Millimeter/submillimeter Array (ALMA) data, we perform spatially resolved spectral energy distributions (SED) fitting of fourteen 4 < z < 6 ultraviolet (UV)-selected main-sequence galaxies targeted by the ALMA Large Program [C ii] Resolved ISM in Star-forming Galaxies. We consistently model the emission from stars and dust in similar to 0.5-1 kpc spatial bins to obtain maps of their physical properties. We find no offsets between the stellar masses (M-*) and star formation rates (SFRs) derived from their global emission and those from adding up the values in our spatial bins, suggesting there is no bias of outshining by young stars on the derived global properties. We show that ALMA observations are important to derive robust parameter maps because they reduce the uncertainties in L-dust (hence, A(V) and SFR). Using these maps, we explore the resolved star-forming main sequence for z similar to 5 galaxies, finding that this relation persists in typical star-forming galaxies in the early Universe. We find less obscured star formation where the M-* (and SFR) surface densities are highest, typically in the central regions, contrary to the global relation between these parameters. We speculate this could be caused by feedback driving gas and dust out of these regions. However, more observations of IR luminosities with ALMA are needed to verify this. Finally, we test empirical SFR prescriptions based on the UV+IR and [C ii] line luminosity, finding they work well at the scales probed (approximately kiloparsec). Our work demonstrates the usefulness of joint HST-, JWST-, and ALMA-resolved SED modeling analyses at high redshift.