Browsing by Author "Amiri, A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemConnecting X-ray nuclear winds with galaxy-scale ionised outflows in two z ∼ 1.5 lensed quasars(2021) Tozzi, G.; Cresci, G.; Marasco, A.; Nardini, E.; Marconi, A.; Mannucci, F.; Chartas, G.; Rizzo, F.; Amiri, A.; Brusa, M.; Comastri, A.; Dadina, M.; Lanzuisi, G.; Mainieri, V.; Mingozzi, M.; Perna, M.; Venturi, G.; Vignali, C.Aims. Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on host galaxy evolution, but the matter of how they are accelerated and propagated on galaxy-wide scales is still under debate. This work addresses these questions by studying the link between X-ray, nuclear ultra-fast outflows (UFOs), and extended ionised outflows, for the first time, in two quasars close to the peak of AGN activity (z similar to 2), where AGN feedback is expected to be more effective.Methods. Our selected targets, HS 0810+2554 and SDSS J1353+1138, are two multiple-lensed quasars at z similar to 1.5 with UFO detection that have been observed with the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematical analysis of the [O III]lambda 5007 optical emission line to trace the presence of ionised outflows.Results. We detected spatially resolved ionised outflows in both galaxies, extended more than 8 kpc and moving up to v>2000 km s(-1). We derived mass outflow rates of similar to 12 M-circle dot yr(-1) and similar to 2 M-circle dot yr(-1) for HS 0810+2554 and SDSS J1353+1138.Conclusions. Compared with the co-hosted UFO energetics, the ionised outflow energetics in HS 0810+2554 is broadly consistent with a momentum-driven regime of wind propagation, whereas in SDSS J1353+1138, it differs by about two orders of magnitude from theoretical predictions, requiring either a massive molecular outflow or a high variability of the AGN activity to account for such a discrepancy. By additionally considering our results together with those from the small sample of well-studied objects (all local but one) having both UFO and extended (ionised, atomic, or molecular) outflow detections, we found that in 10 out of 12 galaxies, the large-scale outflow energetics is consistent with the theoretical predictions of either a momentum- or an energy-driven scenario of wind propagation. This suggests that such models explain the acceleration mechanism of AGN-driven winds on large scales relatively well.
- ItemGalaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars(2020) Marasco, A.; Cresci, G.; Nardini, E.; Mannucci, F.; Marconi, A.; Tozzi, P.; Tozzi, G.; Amiri, A.; Venturi, G.; Piconcelli, E.; Lanzuisi, G.; Tombesi, F.; Mingozzi, M.; Perna, M.; Carniani, S.; Brusa, M.; Alighieri, S. di SeregoWe used MUSE adaptive optics data in narrow field mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z similar or equal to 0.06) bright quasars (QSOs) hosting sub-pc scale ultra-fast outflows (UFOs) detected in the X-ray band. We decomposed the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (similar to 80 km s(-1)) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated with tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (similar to 800 km s(-1)) velocity dispersion and a blue-shifted mean velocity, as is expected from outflows driven by active galactic nuclei (AGN). We estimate mass outflow rates up to a few M-circle dot yr(-1) and kinetic efficiencies L-KIN/L-BOL between 1-4x10(-4), in line with those of galaxies hosting AGN of similar luminosities. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, which is consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. In comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or an energy-driven regime, indicating that these two theoretical models bracket the physics of AGN-driven winds very well.
- ItemMOKA3D: An innovative approach to 3D gas kinematic modelling I. Application to AGN ionised outflows(2023) Marconcini, C.; Marconi, A.; Cresci, G.; Venturi, G.; Ulivi, L.; Mannucci, F.; Belfiore, F.; Tozzi, G.; Ginolfi, M.; Marasco, A.; Carniani, S.; Amiri, A.; Di Teodoro, E.; Scialpi, M.; Tomicic, N.; Mingozzi, M.; Brazzini, M.; Moreschini, B.Studying the feedback process of active galactic nuclei (AGN) requires the characterisation of multiple kinematical components, such as rotating gas and stellar discs, outflows, inflows, and jets. The usual approach to compare the observed galaxy properties with feedback theoretical predictions relies on simplified kinematic models. This allows us to assess the mutual interaction between the galaxy components and determine the energy injection rate into the interstellar medium. However, these models have several limitations, as they often do not take into account projection effects, beam smearing, or the surface brightness distribution of the emitting medium. Here, we present MOKA(3D), an innovative approach to modelling the 3D gas kinematics from integral field spectroscopy observations. In this first paper, we discuss its application to the case of AGN ionised outflows, whose observed clumpy emission and apparently irregular kinematics are only marginally accounted for by the existing kinematical models. Unlike previous works, our model does not assume the surface brightness distribution of the gas, but exploits a novel procedure to derive it from observations by reconstructing the 3D distribution of emitting clouds and providing accurate estimates of the physical properties of spatially resolved outflow (e.g., mass rate, kinetic energy). We demonstrate the capabilities of our method by applying it to three nearby Seyfert-II galaxies observed with the Multi Unit Spectroscopic Explorer (MUSE) at the VLT and selected from the Measuring Active Galactic Nuclei Under MUSE Microscope (MAGNUM) survey, showing that the complex kinematic features observed can be described by a conical outflow with a constant radial velocity field and a clumpy distribution of clouds.
- ItemNew multiple AGN systems with subarcsec separation: Confirmation of candidates selected via the novel GMP method(2023) Ciurlo, A.; Mannucci, F.; Yeh, S.; Amiri, A.; Carniani, S.; Cicone, C.; Cresci, G.; Lusso, E.; Marasco, A.; Marconcini, C.; Marconi, A.; Nardini, E.; Pancino, E.; Rosati, P.; Rubinur, K.; Severgnini, P.; Scialpi, M.; Tozzi, G.; Venturi, G.; Vignali, C.; Volonteri, M.The existence of multiple active galactic nuclei (AGNs) at small projected distances on the sky is due to either the presence of multiple, inspiraling supermassive black holes, or to gravitational lensing of a single AGN. Both phenomena allow us to address important astrophysical and cosmological questions. However, few kiloparsec-separation multiple AGNs are currently known. Recently, the newly developed Gaia multi-peak (GMP) method provided numerous new candidate members of these populations. We present spatially resolved, integral-field spectroscopy of a sample of four GMP-selected multiple AGN candidates. In all of these systems, we detect two or more components with subarcsec separations. We find that two of the systems are dual AGNs, one is either an intrinsic triple or a lensed dual AGN, while the last system is a chance alignment of an AGN and a star. Our observations double the number of confirmed multiple AGNs at projected separations below 7 kpc at z > 0.5, present the first detection of a possible triple AGN in a single galaxy at z > 0.5, and successfully test the GMP method as a novel technique to discover previously unknown multiple AGNs.
